

Welcome to the second part of the Apple Ill Business BASIC manual.
This volume contains a summary of. Business BASIC and appendices
with more technical information. The index at the end of this volume
contains references for both volumes of the Business BASIC manual.

If you are new to programming in BASIC, or have not used Business
BASIC before, you should first read the first volume of the Business
BASIC manual for information about programming in Business
BASIC and details of this dialect of the BASIC language.

Syntax Notation
The syntax of a language is a body of rules that define the various
language elements and how they may be combined. There are simple
elements that are combined into compound elements, which in turn
can be combined into expressions and statements.

An element is defined like this:

(element to be defined) ::= (some combination of previously
defined elements).

Any uppercase letters or punctuation marks appearing on the right
side of the definition must be typed exactly as shown. Lowercase
letters represent free information that you must fill in. For example, in
the definition

goto statement::= GOTO linenum

the letters "GOTO" must be typed just as shown, followed by any
legal line number.

Some definitions have two or more lines containing ::= in them.
These lines are equivalent definitions for a given key word.

To combine elements, the following symbols are used. Note that you
do not type them when you are entering a program! They are for
purposes of describing syntax only!

I separate alternative elements.
[enclose optional elements.
{ } enclose repeatable elements that must occur at least once.

\ \ enclose elements whose values are to be used.
indicates that adjacent elements must be separated by
delimiters. Delimiters are defined later.

Other characters found in the syntax descriptions are required by
BASIC.

Here's an intuitive example of how this system is used to describe the
various parts of BASIC's syntax. In this example, we'll use houses, as
they are familiar places to most of us:

house

home

price

: := roof{ door}{ window }[fireplace][all-electric kitchen]

A house has a roof, one or more doors, one or more
windows, and may have a fireplace and an all-electric
kitchen.

:: = house! cottage! mansion

A home can be a house, cottage, or mansion.

::= \house\

The selling price is the value of the house.

suburban neighborhood

::=house{ ~house}

Suburban neighborhoods have space between the houses.

urban neighborhood

::= house{house}

Urban neighborhoods have no space between houses.

The remainder of this chapter is a description of the statements and
functions of BASIC.

Statements and Functions
ABS

::= ABS(aexpr)

)PRINT ABS(345)
345
)PRINT ABS(24-363)
339

Returns the absolute value of the argument; in other words, the value
of the argument if it is positive, 0 if the value is zero, and the negative
of the argument value if it is negative.

Arithmetic Operators

::= abopJauop

The operands of arithmetic expressions can be reals, integers, or
long integers. (Long integers may not be mixed in expressions with
either reals or integers.) There are nine arithmetic operators:

Symbol Meaning Example Numeric Value

+ Unary plus +5 +5
Unary minus -2 -2

" Exponentiation 2"4 16

* Multiplication 4*6 24
I Division 5/2 2.5
MOD Modulo 7MOD5 2
DIV Integer Division 7 DIV 5 1
+ Addition 4+7 11

Subtraction 9-2 7

ARRAYS

An array is an ordered collection of single variables, all of the same
type. The name of the whole collection, called the array name, can be
any legal variable name. The last character of the name determines
the type of all of the variables in the array.

The individual variables (or elements) within an array are numbered,
starting with number 0. To refer to any element within an array, you
specify the name of the array, followed by the number of the element
enclosed in parentheses, called a subscript. For example:

)PRINT AR(3)
)PRINT Prices(147)
)D%(0,0)=85

An array may have any number of elements up to the limit of available
memory. The number of dimensions is the number of subscripts
needed to specify an individual element within the array.

ASC

::= ASC(sexpr)

)PRINT ASC("BEEP")
)d$="Air horn" :PRINT ASC(d$+"s")

ASC returns the decimal ASCII code corresponding to the first
character of the given string expression. If the string expression
value is a null string, then the value -1 is returned.

ATN

::= ATN(aexpr)

)PRINT ATN(.3456)
.33275
)

Returns the arctangent, in radians, of the given argument. The value
returned represents an angle in the range -pi/2 to +pi/2 radians.

BUTTON- see page 219

CATALOG

::= CAT[ALOG]

)CATALOG
)CATALOG I Apple1
)CATALOG /Apple1/Applekind
)CATALOG .02

CATALOG displays a listing of a root directory or subdirectory
specified by the pathname following the reserved word CATALOG. If
the specified pathname is a given volume name, then the names of all
files in the given root directory are displayed on the screen and the
names of any subdirectories of the root directory are also displayed.

If no pathname is given, the pathname contained in PREFIX$ is
assumed. CATALOG may be abbreviated as CAT.

If OUTPUT# is set to anything other than 0, the directory listing will
not be sent to the screen, but to the specified file.

CHAIN

: := CHAIN path name [,linenum]

CHAIN automatically loads and runs a specified program, without
clearing the values of the variables left over from the previous
program, or closing any files the previous program had left open.
This allows variable values used in one program to be used in

another. The pathname of the program to chain must follow the
reserved word CHAIN:

)CHAIN Lightning

If the chained program assigns dimensions to an array that was
defined in the previous program, a ?REDIM ERROR occurs.

CHR$

::= CHR$(aexpr)

)PRINT CHR$(66.8)
)R$="68": PRINT CHR$(VAL(R$))

Returns the ASCII characters corresponding to the value of the
arithmetic argument which must be in the range 0 to 255, or an
?ILLEGAL QUANTITY ERROR occurs. See the appendix ASCII
CHARACTER CODES.

CLEAR

::=CLEAR

CLEAR sets all numeric variables to zero, all strings variables to null
strings, clears all BASIC pointers and stacks, and closes all open disk
files except a file being executed. CLEAR has no options.

CLOSE and CLOSE#

::=CLOSE[# filenum]

)1000 CLOSE
)185 CLOSE# 1

Before ending program execution, all open files should be closed
with either a CLOSE# or CLOSE statement. Any files closed during
program execution must be reopened before they can be accessed
again. Each time a file is opened, even if it was used earlier in the
same program, BASIC assumes that the file has not previously been
opened during the current execution of the program.

CLOSE# closes the file whose file number is equal to the arithmetic
expression that follows CLOSE#.

CLOSE closes all files that are open when the statement is executed.
All open files are also closed by a LOAD, CLEAR, NEW, or RUN
statement. The CHAIN statement does not close any files.

CONT

::= CONT

CONTresumes execution of a program that has been halted by STOP,
END, or CONTROL-C at the statement immediately following the one
at which execution was suspended.

CONT does not clear the program, or reset the variables in memory,
and there are no options associated with it.

A program halted by an error may be continued. BASIC will attempt
to continue execution starting with the statement in which the error
occurred. An error made in immediate execution will not prevent a
program from being continued.

A program that has had any of its statements altered, or any new
statements added, may not be continued. If you try, the

?CAN'T CONTINUE ERROR

message will be displayed. The values of variables in a program can
be changed using assignment statements in immediate execution
while the program is stopped.

CONTROL-S, 6, 7, 8, 9

Control-S, -6, -7, -8, or -9 entered from the numeric keypad all
perform special functions.

Control-S switches off the viCieo refresh, allowing programs to run
slightly faster. Pressing Control-S again switches the video refresh
back on.

CONTROL-6 clears the typeahead input buffer. Any characters you
have typed on the keyboard that your Apple has not yet displayed are
discarded.

CONTROL-? suspends screen output until a second CONTROL-? is
pressed to restart it. The screen output buffer is not cleared.

CONTROL-? has the side effect of suspending
execution if it is pressed while characters are being
displayed on the screen (that is, when the output
buffer is in use).

CONTROL-S causes all control characters sent to the screen to be
ignored. Instead, the two-character abbreviations of the control
characters are displayed. To make control characters function
normally again, press CONTROL-S once more. CONTROL-S is useful
in debugging programs. If you have a different character set loaded,
you may see characters other than the abbreviations. See your Apple
Ill Standard Device Drivers manual for a list of control character
abbreviations.

CONTROL-9 clears the screen output buffer. All characters that would
normally be displayed on the screen are not displayed. After a second
CONTROL-9 is pressed, character display is resumed.

CONTROL-RESET

Pressing the RESET button while holding the CONTROL key down
reboots your Apple Ill, just as if you had switched the Apple off and
back on. Anything stored in memory is lost during a CONTROL
RESET (including your program and BASIC).

CONV

::= CONV(expr)

)G&=234234I H&=523523l PRINT CONV(H&-G&)
289289
)

Evaluates the argument, and returns a real value. The value may be
assigned to a regular integer. The conversion from real to integer is
automatic in the latter case. If CONV is used with a string expression,
the effect is the same as with the VAL function.

CONV$

::= CONV$(expr)

)D%=3451 A%=4531 PRINT "a"+CONV$(D%*A%)+"z"
a156285z
)

Evaluates the given expression, and returns a string value.

CONV&

:: = CONV&(expr)

)PRINT CONV&(2178-7954)
-5776
)PRINT CONV&("4.214")
4
)

Evaluates the given argument, and returns a long integer value.

If the argument is a string, then the effect is the same as using VAL
followed by CONV& (see the chapter STRINGS AND STRING
FUNCTIONS for an explanation of the VAL function). The value

returned must be within the range 922337203685775807 to
-9223372036854775808, or an ?OVERFLOW ERROR occurs.

CONV%

::== CONV%(expr)

)PRINT CONV%(423.94)
424
)A&== 76561 8&==3641 PRINT CONV%(A&/B&)
21
)

Evaluates the argument and returns an integer value, rounding off to
the nearest whole number. The value returned must be within the
range -32768 to 32767, or

?OVERFLOW ERROR

is displayed.

cos
::== COS(aexpr)

)PRINT COS(1.571)
- 2.03673E-04
)

Returns the cosine of an angle given in radians.

CREATE

::==CREATE pathname, CATALOGITEXTIDATA [,aexpr]

)CREATE "/Pies/ Apple pie", Text
)CREATE Attache, Text, 4212

CREATE is used to make root directories, subdirectories, text files,
and data files. You must specify exactly what type of file you want to
create and its name, by following the reserved word CREATE with the

new path name and either TEXT, DATA, or CATALOG, separated by a
comma. TEXT specifies that a text file be created; DATA specifies that
a data file be created; and CATALOG specifies a root d!rectory or
subdirectory.

A file's record size may be specified by appending an arithmetic
expression to the CREATE argument list. The record size is required
only for random-access files, and must be in the range from 3 to
32767. If no record size argument is given, the file record size
defaults to 512 bytes. When creating subdirectories, the arithmetic
expression specifies the size of the directory. The directory size
defaults to 512 bytes if unspecified (enough to hold twelve files).

An attempt to create an already-existing file generates a ?DUPLICATE
FILE ERROR.

DATA

::= DATA [literaljstringjrealjintegerjlong integer]
[{, [literaljstringjrealjintegerjlong integer]}]

)1158 DATA "Panjandrum",1.41421,Deficit&

Creates a list of elements that can be used by a READ statement.

DEFFN

::= DEF FN functionname (real variable)= aexpr

)10 DEF FN Negate(X) = -X
)20 DEF FN Sworded.4(C) = INT(RND(3)*100)
)30 DEF FN M5BY7.MAT(DED) = DED*LOG(33) -ABS(F%)

DEF FN allows you to define functions to be used in your programs.
The function;s argument must be a real and the reserved words DEF
FN must be followed with a defining expression. Only functions of
type real can be defined. Integer variables may be used in the
expression, but they are automatically converted to reals by BASIC.

An ?UNDEF;D FUNCTION ERROR occurs if a function is used in a
statement before being defined.

DEL

::=DEL linenum [TOj,j-[linenum2]]

DEL deletes lines from the program stored in memory. You can
specify either a single line or a range of lines to be deleted.

)DEL 7
)DEL 85 TO 515
)DEL 73, 193
)DEL 996-1010

Each of the examples above will delete all existing lines of the
program presently in memory within the specfied range (including
the single line).

In deferred execution, attempting to delete the line currently being
executed or any smaller numbered lines causes a

?RANGE ERROR

message.

DELETE

::=DELETE pathname

)DELETE /Tree/Banana

The DELETE statement is used to remove the subdirectory or file
specified as its argument. A subdirectory may be removed only if all
files in that subdirectory have been deleted.

Even if all files in a root directory have been removed, you cannot
remove the root directory.

A number of errors can occur with improper arguments appended to
a DELETE statement. They are summarized in the table below.

Error Message

?VOLUME NOT FOUND ERROR

?PATH NOT FOUND ERROR
?FILE NOT FOUND ERROR
?FILE LOCKED ERROR

?WRITE PROTECTED ERROR
?FILES BUSY ERROR

Cause

Volume name given does not
exist.
Subdirectory does not exist.
Non-existent local file name.
Subdirectory contains files, or
specified file is locked.
Diskette is write-protected.
One or more files are open.

Table 7-1. Possible DELETE Errors.

DIM

::= DIM array variable name (aexpr)

You can allocate space for an array in your program with a DIM
statement (DIM stands for dimension). For example,

)DIM MIND%(7,2,3)
)DIM Lights%(78,9), Bulbs$(2,45), Lanterns&(9,0,8), LY(16)

If you refer to an array before defining it with a DIM statement, BASIC
automatically creates an array having 11 elements per dimension,
with subscripts numbered from 0 to 10. If the statement

)PRINT D&(18,LOOP5)

is executed before the array D& is defined, a ?RANGE ERROR
occurs, because the subscript 18 is greater than the default
maximum of 10 for each dimension.

If the value of a subscript refers to either a nonexistent dimension or
a nonexistent element (one that is greater than the highest numbered
element in a given dimension), a ?BAD SUBSCRIPT ERROR occurs.

ELSE

::= ELSE exprjlexprjlinenum

See IF..THEN.

END

::=END

END is identical to STOP except that no message is displayed.

ENGRSPf=C

::= [+I-] engrpart [fracpart] exp

)PRINT USING "+3# .4#4E"; 1729
+ 1.7290E+03
)PRINT USING "+3Z.4Z3E"; 1729
+01.729E+3

The engineering specification (engrspec) is closely related to the
scispec. It forces the exponent;s value to be a multiple of 3, and has a
maximum of three digit positions to the left of the decimal point.

Either #'s or Z's can be used to indicate digit positions, and their
choice is significant only to the left of the decimal point: # replaces
leading zeros with spaces, and Z prints leading zeros.

EOF

BASIC assigns the file reference number of the file causing an EOF
error to the reserved variable EOF. You can then check the reserved
variable EOF to determine the affected file.

When you use the reserved variable EOF in an ON ... GOTO or ON ..
. GOSUB statement, you must enclose EOF in parentheses. For
example,

)ON (EOF) GOTO 100,200,300

ERR

When BASIC encounters an error, it assigns the reserved variable
ERR a code number corresponding to the type of the detected error.
You can then refer to the reserved variable ERR to determine what

kind of error occurred. For a list of these codes and the
corresponding error messages, see the appendix ERRORS.

EXFN.
::= EXFN. pathname [(lesprj@var[{,lexprj,@var}])]
)PRINT EXFN.CalcX(2)*32/256

EXFN. executes an external assembly language function (loaded by
an INVOKE statement) that returns a real value.

If you want to pass an integer argument, you must precede the
expression being passed with a percent sign.

To pass addresses of variables, precede the variable name with an at
sign(@).

EXFN%
::= EXFN%. pathname [(lexpr:@var[{,lexpr:,@var}])]

EXFN%. is identical to EXFN. except that the assembly language
function involved returns an integer instead of a real value.

If you want to pass an integer argument, you must precede the
expression being passed with a percent sign.

To pass addresses of variables, precede the variable name with an at
sign(@).

EXP

::= EXP(aexpr)

)PRINT EXP(3)
20.0855
)

Raises e (to 6 places, e=2.718282) to the power indicated by the
argument value.

FIXSPEC

::=[**] [$] [+1-J digitspec
::=[**] [+1-] [$] digitspec
::=[**] [$] digitspec [+1-]
::=$$[+1-] digitspec
::=$$ digitspec [+I-]
::=[++1--] [$] digitspec

+ reserves a character position for the sign. Sign is printed
in all cases.

- reserves a character position for the sign. Sign is printed if
negative; otherwise a space is printed.

$reserves a character position for a dollar sign.

**means print asterisks instead of spaces in unused character
positions.

+ + reserves the rightmost unused position(s) for the sign
(and following dollar sign, if any).

-- same as + + except the sign is replaced by a space if it is
positive.

$$ reserves the leftmost unused position(s) for a dollar sign
(and following numeric sign, if any).

You cannot use$$,++, or-- if you use Z for the digitspec.

)PRINT USING"+###.###"; 3.14159
+ 3.142
)PRINT USING "+6Z.3Z"; 09999
+ 009999.000
)PRINT USING "+6&.3&"; 09999
+ 9,999.000
)PRINT USING "**+6#.3#"; 09999
+**9999.000
)PRINT USING "**+6#.3#-"; 09999
***$9999,000

)PRINT USING "+$6#.2#"; 09999
+ $9999.00
)PRINT USING "$$+6#.3#"; 09999
$+9999.00
)PRINT USING "++6#.3#"; 09999
+9999.00
)PRINT USING "$--6# .3#"; 09999
$9999.00+
)PRINT USING "$$6#.3#+"; 09999
$ 9999.00+

The fixed-point specification (fixspec) controls the output format of
fixed-point numbers with a PRINT USING or PRINT# USING
statement. Fixed-point numbers are any numbers displayed without
exponents, including integers, long integers, and real numbers.

A "digitspec", composed of combinations of the characters#,&, and
Z, is used to define the format of the number being displayed.

A"#" reserves one numeric digit position. Leading zeros (if present)
are replaced with spaces.

A "Z" reserves one numeric digit position, just like a"#", except that
leading zeros are printed.

An"&" character reserves one position for a numeric digit or comma.
Commas are inserted after every third digit left of the decimal point.
Commas are included in the character count and leading zeros are
replaced with spaces. At least five digit positions must be reserved to
the left of the decimal point when using &.

If you specify a fixspec with a fractional part and apply it to an
integer expression, only zeros will appear to the right of the decimal
point, unless the SCALE function is used.

The entire field is filled with exclamation points if the number of
digits displayed exceeds the number of digits specified to the left of
the decimal point.

A "+" reserves a position for the sign of the number, and causes the
sign to be printed in all cases, while a "-" causes the sign to be

printed only if the number is negative; a space is printed if it is
positive. The sign of the number can also be placed after the last
digit.

A "$" reserves a character position for a dollar sign. A pair of
asterisks(**) causes asterisks to be printed instead of leading
spaces when there are unused digit positions in the output field.

Note that the**· if used, must be the first thing in the fixspec and
cannot be used if Z is used for the digitspec, because Z leaves no
unused digit positions. The dollar sign may come next, or the number
sign(+ or-).

FOR ... NEXT

::=FOR control variable= aexpr1 TO aexpr2 [STEP aexpr3]
::=NEXT [control variable {,control variable}]

)15 FOR lndex=1 to 500: PRINT Card: NEXT Index

FOR and NEXT allow a group of statements to be executed a
specified number of times. The first control variable given in the
NEXT statement must be the same as the one named in the most
recently executed FOR statement; the second control variable given
must match the second most recently executed FOR statement, and
so on. Incorrectly matched FOR and NEXT statements cause a ?NEXT
WITHOUT FOR ERROR.

FRE

::= FRE

FRE is a reserved variable which stores the amount of remaining
available memory, measured in bytes. FRE allows you to check on the
amount of space remaining in memory. See the appendices
VARIABLE MAPS and SPACE SAVERS, for information on using
memory space more efficie'ntly.

Eachtime you access FRE, string variable storage space is
reorganized to recover unused space.

GET

::= GETvar

)110 GET Press$

GET is used to assign a single character or numeral from the
keyboard to a specified variable in your program, without displaying
it on the screen and without requiring that the RETURN key be
pressed.

CONTROL-C is treated by GET like any other character; it does not
interrupt program execution.

If your program that uses GETwas called up by an EXEC file, the
input for the GET statement will be taken from the EXEC file instead
of from the keyboard.

GOSUB

::= GOSUB linenum

)287 GOSUB 1158

Causes the program execution to branch to the indicated line. When
a RETURN statement is encountered, execution branches to the first
line following the most recently executed GOSUB statement.

Nesting subroutines more than 23 deep causes a ?STACK
OVERFLOW ERROR.

GOTO

::= GOTO linenum

)GOTO 100
) 1 00 GOTO 1158

GOTO causes program execution to branch to the indicated line
number. You can also use it in immediate mode to begin executing a
program presently in memory at a given point.

HEX

::= HEX$(aexpr)

)PRINT HEX$(780)
)PRINT HEX$(-1 024)

HEX$ returns a four-character string that is the hexadecimal (base
16) equivalent of the value of the given arithmetic expression. The
expression must be in the range -65535 to +65535, otherwise an
?ILLEGAL QUANTITY ERROR results.

HOME

::=HOME

HOME clears all text within the current text window and moves the
cursor to the upper left corner of the window.

HPOS

SeeVPOS.

IF. .. GOTO and IF. .. THEN

::=IF lexpr GOTO linenum:statementlist
[:ELSE linenum:statementlist]

::=IF lexprTHEN linenum:statementlist [:ELSE
linenum :statementlist]

)IF A=4 GOTO 473
)IF KP+BH GOTO 3785
)1 00 IF G& MOD F& >2 GOTO 121
)IF OTHEN PRINT 1
)50 IF 2+2 THEN 2500
)IF S/3>=17 *NOT 2THEN GOSUB 3000: INVERSE: PRINT
"Hi"
)IF X=1 THEN Y=2: ELSE Y=3
)IF 3<PL5 THEN PL5=-PL5 : ELSE NORMAL : GOTO 376
)718TEXT: IF NOTYTHEN 3200: ELSE WINDOW 1,1 TO 4,4

: GOTO 457

If the expression following IF evaluates to non-zero, the instructions
following THEN or GOTO in the same line will be executed. If the
expression evaluates to false (zero) then execution will continue with
the next higher-numbered line.

In an IF. .. THEN statement, the instructions can be any line number to
which execution should branch, or a statement list for BASIC to
execute.

In an IF. .. GOTO statement, the instruction must be a line number to
which execution can branch.

The optional ELSE clause in IF. .. THEN statements allows you to
specify instructions for BASIC to execute if the truth value of the
logical expression is false. In other words, when the expression is
false, instead of having execution pass to the next higher numbered
line, you can have BASIC execute some instructions. The instructions
following the reserved word ELSE can be a line number to which
execution should branch, or a statement list to execute. If the logical
expression is true, the ELSE clause and any statements following on
that line are ignored.

INDENT

INDENT is a reserved variable that contains the number of spaces to
be used to indent FOR..NEXT loops in the program listings. Its
default value is 2.

INPUT

::=INPUT [string,I;J var{,var}
)1000 INPUT INPUT Zoo$,Gnus,Tolls
)20 INPUT "Enter your age in years"; AGE

INPUT accepts numbers or text typed at the keyboard and assigns
their values to variables specified in the INPUT statement. INPUT can
be used in deferred execution only.

You may optionally include a string in an INPUT statement. The
optional string must be a sequence of characters in quotation marks,
followed by a comma or semicolon; it cannot be a string variable or
expression. When the optional string is present, it is displayed exactly
as specified; no question mark, spaces, or other punctuation are
displayed after the string. You can use only one optional string.

You can halt program execution during an INPUT statement by typing
CONTROL-Cas the first character of your response, followed by
return.

If only the RETURN key is typed when a string response is expected,
the response is interpreted as a null string.

INPUT#

0 ::= INPUT# filenum # [,recnum] # [;var] # {,var}]]

)INPUT# 2; Payment%, Grease$
)INPUT# 8, 34; DG(O), DG(2), DG(4)

INPUT# reads a line of text for each variable in its list of variables.
The file to be read from is defined by a file number following the
reserved word INPUT#. If the file number is followed by a comma, the
arithmetic expression following the comma specifies a record
number at which to begin file access.

INSTR

::= INSTR(sexpr, sexpr # [,aexpr])

)PRINT INSTR("Rain in Spain on the Plain", "ai")
2
)PRINT INSTR("Rain in Spain on the Plain"; "ai", 5)
11

INSTR searches for occurrences of a specified substring within a
string and returns the number of the first character of the substring.

The optional arithmetic expression specifies the character position
where the search should begin. If no arithmetic expression is

specified, the search begins with the first character of the string
expression. If the search fails, 0 is returned.

If the arithmetic expression is greater than the length of the string
expression or less than 1, then an ?ILLEGAL QUANTITY ERROR
occurs.

/NT

::= INT(aexpr)

)PRINT INT(3.3)
3
)X=INT(-3.3): PRINT X
-4
)

Returns the largest whole number value less than or equal to the
argument value.

Notice that we said "whole number" in the last sentence, and
deliberately avoided the term "integer". This is because the INT
function actually returns a real number

INTEGER

::= #[+j-]{digit}

An integer is any positive or negative whole number without a
decimal point, from -32768 to 32767. Attempting to assign a value
beyond this range to an integer variable generates the ?ILLEGAL
QUANTITY ERROR message.

INVERSE

::=INVERSE

INVERSE sets all subsequent display to black letters on a white
background. Characters on the screen before the execution of the
INVERSE or NORMAL statement are not affected.

INVERSE has no effect on characters read from or written to files.

INVOKE

::=INVOKE pathname #[{,pathname}]

)INVOKE FP1, FP2, /Fioppy2/Subr/FP3
)INVOKE Fastprint

INVOKE loads a file containing specified assembly language
subroutines into memory.

You may load as many subroutines at once as you like by separating
each file's pathname by commas.

Executing INVOKE effectively erases any external subroutines
previously loaded by other INVOKE statements and returns any
unused memory to BASIC.

KBD

ON (KBD)-64 GOTO 100,200,300

KBD contains the ASCII value of the last key struck (see the
appendix, ASCII CHARACTER CODES).

@

LEFT$

When you use the reserved variable KBD in an
ON ... GOTO or ON ... GOSUB statement, you must
enclose KBD in parentheses, or BASIC will not treat it
as a variable.

::= LEFT$(sexpr, aexpr)

)PRINT LEFT$("Appleskin" ,5)
Apple
)PRINT LEFT$("Sparkling" ,3)
Spa

LEFT$ returns a string of specified length composed of the leftmost
characters of the given string expression.

If the value of the arithmetic expression exceeds the length of the
string expression value, all of the characters of the string expression
value are returned. If the string expression value contains more than
255 characters, a ?STRING TOO LONG ERROR results. The value of
the arithmetic expression is rounded down to the nearest whole
number if necessary. It must be in the range 1 to 255, or an
?ILLEGAL QUANTITY ERROR results.

LEN

::= LEN(sexpr)

)PRINT LEN("ABCD")
)PRINT LEN(Yarn$)

LEN returns an integer value equal to the length of the string
expression, in the range 0 to 255. A string expression containing
more than 255 characters causes a ?STRING TOO LONG ERROR.

LET

::= #[LET] varjmodifiable resvar = \expression\

)LET Henry= FatherofJack
)LETWaterAnimai$="Biue whale"

The variable name to the left of the"=" is assigned the value of the
expression to the right of the"=". Only one assignment may occur
per statement. LET is optional.

LIST

::= LIST# [linenum] # [TOj,j-# [linenum2]]

)LIST
)LIST 5 TO 300
)LIST 5,300
)LIST 5-300
)LIST TO 2100
)LIST 1585 TO

LIST displays the contents of the program currently in memory.

The first example above displays the entire program presently in
memory. The next three display line 5 through 300, inclusive
(assuming that they exist) of the program presently in memory.

The last two examples will list, respectively, from the beginning of the
program to line 2100 and from line 1585 to the end. The word "TO" in
all examples may be replaced with either a"-" or a",".

The listing can be stopped and restarted by repeatedly pressing
CONTROL-7 (on the numeric keypad). Pressing CONTROL-C
terminates the listing.

LOAD

::=LOAD pathname

)LOAD Countdown
)LOAD .D2/Somefile

LOAD reads a specified BASIC program from a disk file, and stores it
in memory. The pathname of the program to be loaded must follow
the reserved word LOAD (see the chapter FILE 1/0 for an explanation
of pathnames).

All variables in the loaded program are cleared; numeric variables are
all set to zero, string variables are set to null strings. All files are
closed, with the exception of any EXEC file being executed. Any
existing program is cleared from memory.

Attempting to load a file other than a BASIC program causes a
?TYPE MISMATCH ERROR.

LOCK and UNLOCK

::=LOCK pathname
: := UNLOCK path name

)LOCK Barndoor
)UNLOCK Secrets

LOCK prohibits writing to, saving, or deleting the file named as its
argument. Locked files are shown with an asterisk to the left of their
file type when cataloged. Volume names may not be locked, but
subdirectories may be.

UNLOCK allows you to "unprotect" a locked file that you want to
delete, rename, change, or save. The reserved word UNLOCK must be
followed by the file's name.

LOG

::= LOG(aexpr)

)PRINT LOG(20.0855)
3
)

Returns the natural (base e) logarithm of the argument value.

LOGICAL EXPRESSIONS

Logical expressions are also called relational expressions and
Boolean expressions. They are similar to arithmetic expressions, but
use different operators. A logical expression can have only one of two
values: 1 (or true) or 0 (or false). Any arithmetic expression with a
non-zero value has a truth value of 1, and any with a value equal to
zero has a truth value of 0.

There are nine logical operators:

Symbol Meaning Example Truth value

Equal to 3=3 1
< Less than 3<1 0
> Greater than 7>4 1
<=or=< Less than or equal to 5<=4 0
>=or=> Greater than or equal to 8>=5 1
<>or>< Not equal to 4<>4 0
AND Conjunction 5ANDO 0
OR Inclusive disjunction 80R3 1
NOT Negation NOT4 0

It is possible to use logical operators in string expressions. For
example, "alpha" < "beta" is true.

LONG INTEGER

::= [+I-J{digit}

Long integers may be up to 19 digits long. They may not be mixed in
arithmetic expressions with regular integers or reals {described
below). Long integer variable names must end with an ampersand
{&).A long integer can range from -9223372036854775808 to
9223372036854775807. Exceeding this range causes the message

?OVERFLOW ERROR

to be displayed. Entering the number -9223372036854775808 from
the keyboard will also cause the same error.

MID$

::= MID$ (sexpr, aexpr1 [, aexpr2])

)PRINT MID$("Bookkeeping" ,5)
)keeping
)PRINT MID$("Bookkeeping",5,4)
)keep

MID$ returns a substring of a given string expression. The first
arithmetic expression specifies the first character to be returned from
the string, and the second arithmetic expression {if given) specifies
the length of the substring to be returned.

If the value of the first arithmetic expression exceeds the length of
the string expression value, then a null string is returned. If the value
of the second arithmetic expression specifies a greater number of
characters to be retrieved from the string expression value than exist,
all of the characters from the position specified by the value of the
first arithmetic expression to the end of the value of the string
expression are returned.

If the string expression value contains more than 255 characters, a
?STRING TOO LONG ERROR occurs. If the value of either arithmetic
expression is outside the range 1 to 255, then an ?ILLEGAL
QUANTITY ERROR occurs.

NEW

::=NEW

NEW erases the current program and all its associated variables from
the Apple's memory, and closes all open files except a text file being
executed (see the EXEC statement in the chapter AUTOMATIC
EXECUTION). NEW has no options.

NORMAL

::=NORMAL

This is the default display mode. NORMAL sets the display to white
letters on a black background. Characters on the screen before the
execution of the NORMAL statement are not affected.

NORMAL has no effect on characters read from or written to files.

NOTRACE

::= NOTRACE

There are no options associated with NOTRACE, it simply cancels
TRACE; the line numbers of executing program statements are not
displayed.

OFF EOF#

: := OFF EOF# filenum

The OFF EOF# statement cancels an ON EOF# statement. After an
OFF EOF# statement has been executed, BASIC resumes displaying
error messages and halting execution when an end of file is reached,
just as it did before the ON EOF# statement was executed. You must

follow the reserved word EOF# with a file reference number to
specify which file's ON EOF# statement should be canceled.

ON EOF#
::=ON EOF# filenum statemenUist

ON EOF# is used to force BASIC to allow your program to control
what happens if BASIC reads pastthe end of a file, just as an ON ERR
statement allows your program to perform its own error handling.
EOF stands for End Of File.

A statement or statement list must follow the reserved word EOF#,
exactly like a GOTO statement.

ON ERR and OFF ERR

::=ON ERR statementlist
::=OFF ERR

10 REM EXAMPLE OF ERROR HANDLING
20 ON ERR GOSUB 1000
30 INPUT "Please type a single number between 1 and 100
";X
40 PRINT 'The number you typed was ";X
50 END
1000 REM ERROR HANDLING SUBROUTINE
1010 PRINT :PRINT "I'm very sorry, but only a number
will do. Please try again."
1020 RETURN

ON ERR is used to force BASIC to let your program handle any errors
that might occur by branching to an error-handling subroutine that
you have included in the program.

The RETURN at the end of the error-handling routine causes
execution to branch back to the line where the error occurred.

The ON ERR statement should not be used as a tool for finding errors
in programs. (Use the TRACE statement for this instead.)

If a program contains more than one ON ERR statement, only the
most recently executed one will be used.

OFF ERR cancels the most recently executed ON ERR statement.
There are no parameters or options associated with this statement.
After an OFF ERR statement has been executed, BASIC resumes
displaying error messages and halting execution just as it did before
the ON ERR statement was executed.

The statements that ON ERR causes to be executed
must themselves be free of errors, or an endless loop
may result. The endless loop will be unstoppable by
CONTROL-C. because CONTROL-C is itself
considered an error. For a complete list of BASIC
errors, see the appendix ERRORS.

ON KBD and OFF KBD

::=ON KBD statementlist
::=OFF KBD

10 ON KBD GOTO 100: REM BASIC branches here when any
key is pressed
20 PRINT"."; : REM Print periods while not handling key
strokes
30 GOTO 20
100 PRINT KBD :REM Display the ASCII value of the key last
pressed
110 ON KBD GOTO 100 : REM Reenable ON KBD. Must be
before return
120 RETURN :REM Program jumps back to the statement
following the one during which a key was pressed

ON KBD is used to cause BASIC to execute a specific statement list
immediately when any key is pressed. The statement list to be
executed must follow the reserved word KBD.

Note that you must reenable the ON KBD statement immediately
before executing the RETURN statement at the end of the execution
list.

After an ON KBD statement has been executed, BASIC continues
executing the program normally-but as soon as any key is pressed,
execution branches back to the most recently executed ON KBD
statement. Then the statement list pointed to by the ON KBD
statement is executed.

The branch to the ON KBD statement list is treated as a GOSUB to a
subroutine, so the program segment that KBD causes to be executed
must end with a RETURN statement. To enable ON KBD to handle
more than one keystroke, the last statement in the list should be
another ON KBD statement.

When ON KBD is in effect, the program can not be
halted with CONTROL-C. since this is treated just like
any other keystroke. However, the ON KBD statement
could cause a branch to a STOP or END statement if a
CONTROL-C is typed. A RETURN statement placed
after the STOP would allow the CONT statement to be
used.

ON ... GOSUB

: := ON aexpr GOSUB linenum {[,linenum]}

)1000 ON Corfu GOSUB 1000, 2000, 3000, 4000

ON ... GOSUB is identical to the ON ... GOTO statement, except that the
line numbers following the reserved word GOSUB must be line
numbers of subroutine entry points.

ON ... GOTO

::=ON aexpr GOTO linenum {(,linenum]}

)1 000 ON X GOTO 1 00, 10, 300, 40

ON ... GOTO is used to specify different program branch points, based
on the value of an arithmetic expression. The arithmetic expression

must follow the reserved word ON, and the line numbers to which
execution branches must follow the reserved word GOTO.

If X=1, execution branches to the first line in the list of numbers (line
100). If the value of X is 2, then execution branches to the second line
in the list (line 10). If X=3, execution branches to line 300 (the third
line in the list), and so on.

The value of the arithmetic expression must be within the range 0 to
255, or an ?ILLEGAL QUANTITY ERROR occurs. If the value of the
arithmetic expression is 0, or greater than the number of line
numbers given in the ON ... GOTO statements, the list of line
numbers is ignored, and execution continues with the next statement
in the program.

OPEN#

::=OPEN# filenum [AS INPUTIAS OUTPUTIAS EXTENSION],
pathname [, recsize]

)OPEN #6, Door
)OPEN #4, Window, 163
)OPEN #2 AS INPUT, .CONSOLE
)OPEN #1 AS OUTPUT, .PRINTER
)OPEN #1 AS EXTENSION, Ladder

OPEN# is used to open files for access, and must precede any file 1/0
statements accessing a given file. The arguments following OPEN#
are a file reference number and the file's pathname. The file reference
number is used in all subsequent 1/0 statements to refer to the file
while it is open. The file reference number can be any arithmetic
expression having a value between 1 and 10, inclusive.

~

If the OPEN#· file reference number is followed by the reserved words
AS INPUT, the file is opened as a read-only file and may not be written
to.

If the OPEN# file reference number is followed by the reserved words
AS OUTPUT, the file is opened as a write-only file and may not be
read from.

The AS EXTENSION option is a variant of AS OUTPUT, and is used in
sequential access to allow PRINT#, or WRITE# statements to append
new information to the end of an existing file without disturbing any
data that was put in the file earlier.

OUTPUT#

::=OUTPUT# filenum

)OUTPUT #5

OUTPUT# redirects screen output to a specified file. All PRINT, LIST,
TRACE, and CATALOG statement output is sent to the specified file,
but keyboard input is echoed and error messages are still sent to the
screen. The file used for output is specified by its file number (set by
an OPEN# statement) following the reserved word OUTPUT#.

Remember that system 1/0 devices such as .CONSOLE and .PRINTER
are treated as files and may be opened and used as such.

To resume normal screen output, type

)OUTPUT# 0

and characters will again be displayed on the screen. A CLOSE or
CLOSE# statement also redirects output to the screen.

OUTREC

OUTREC is a reserved variable that contains the maximum length of
lines output by the LIST command. The value of OUTREC must be
greater than the value of INDENT.

POL- see page 219

PERFORM

::= PERFORM pathname [(lexprl@var[{,lexprl,@var}])]

)PERFORM StrangeRites(&Pennies, %Accountants)
)PERFORM Errproc(R,13-6,@D)

PERFORM executes a specified assembly language procedure
previously loaded by an INVOKE statement. If an argument list is

present (enclosed in parentheses after the procedure name) each
argument is evaluated and passed to the procedure before execution.

To pass real numbers or the values of single variables, just include
them in the argument list as an expression (for an explanation of
expressions see the chapter EXPRESSIONS AND STATEMENTS).

If you want to pass an integer argument, you must precede the
expression being passed with a% sign.

To pass addresses of variables, precede the variable name with an @
sign.

If you want your subroutine to operate on a string in memory, using
the at sign gives an address pointing to the string's descriptor in
memory. The subroutine should be designed to act on the string from
that point on.

POP

::=POP

POP allows you to jump out of one level of subroutine nesting by
removing the top pointer from the program stack and discarding it.
When the next RETURN statement is encountered after a POP
statement is executed, instead of branching to the first statement
beyond the most recently executed GOSUB, BASIC branches to the
first statement beyond the second most recently executed GOSUB.

PREFIX$

PREFIX$ is a reserved variable that contains the most rec~ntly
assigned default pathname prefix. ·

PRINT

::= ?!PRINT {Li;l [expr]} Ll;l

)PRINT
)PRINT "Several words of text."
Several words of text.

)A$="E is about" : E=2.718
)PRINTA$;E
E is about 2.718

PRINT displays text. An item list may include any expression, comma,
semicolon, TAB specification, or SPC specification following the
reserved word PRINT.

Expressions in PRINT statements are evaluated and their values
displayed. If there are several expressions, their values are displayed
in sequence. A PJ;liNT statement without an item list moves the cursor
to the beginning of the next screen line.

If a comma separates two expressions, a tab action separates their
values on the screen; if a semicolon separates them, the second
value is displayed after the first with no intervening spaces.

Following the last expression in a PRINT statement, there may be a
semicolon, comma, or nothing. If there is nothing after the last
expression, the cursor moves to the beginning of the next screen line.
A comma causes a tab action. A semicolon leaves the cursor in the
position immediately following the last character displayed.

PRINT USING

::= ?I PRINT filenum [, recnum] USING linenumlstringlsvar
[; expr[{,expr}]] [;]

The PRINT USING statement is the same as a PRINT statement with a
USING clause used to control the format of information sent to the
file. Both PRINT and USING are described in detail in the chapter on
APPLE BUSINESS BASIC 1/0.

PRINT#

[::= ?#!PRINT# filenum [, recnum] [; expr [.. ; expr]. [;]]

)PRINT# 1; W$(0,0,0), LEFT$(W$(0,0, 1))
)PRINT# 10, 4755; A&+24, T&/43, R%

PRINT# writes information to files like PRINTwrites information to
the screen. Its syntax is the same as the PRINT statement described ..
above. After the file number (or record number, if included) a list of
expressions separated by commas must follow.

One line of text is written for each expression in the list. PRINT#
automatically performs any necessary numeric to string type
conversions (similar to the STR$ function) in order to transfer the
information from the expressions to the file.

A PRINT# statement in which a specific record number is given starts
writing information to the file at the beginning of the specified
record.

The SPC specification can be used with PRINT# statements in the
same way it is used with PRINT statements.

PRINT# USING

::= ?#!PRINT# filenum [, recnum] USING linenumlstringlsvar
[; expr[{,expr}]] [;]

The PRINT# USING statement is the same as a PRINT statement with
a USING clause used to control the format of information sent to the
file. Both PRINT and USING are described in detail in the chapter on
APPLE BUSINESS BASIC 1/0.

READ

::= READ var [{,var}]
)2001 READ Odyssey$,Wine%,Dark&,C

READ assigns the variables in its list values taken from elements in
the program's DATA statement list.

If CONTROL-C is a data element, it does not halt execution of the
program even when it is the first character of an element. With this
exception, data elements read into string variables follow the rules
for INPUTresponses assigned to string variables:

• Either literal or quoted strings may be used.
• Spaces preceding and following strings are always ignored,

except with quoted strings.

• Quotation marks appearing within a quoted string cause the

?SYNTAX ERROR

message, but all other characters, including commas are
accepted as characters in that string. The entire string may
be enclosed within quotes, however.

• The colon and comma are accepted only in quote-enclosed
strings.

If a READ statement attempts to assign a string data element value to
an arithmetic variable, the

?SY'NTAX ERROR

message appears when the incorrect value type is assigned.

Variables are assigned values of zero or null string (depending on the
variable's type) when any of the following conditions are met when an
attempt is made to read a data element:

• A comma is the first non-space character following the
reserved word DATA.

• There is no data element between two commas.

• The last character in a DATA ,statement is a comma (when the
comma is being read as a data element).

READ#

::= READ# filenum [, recnum] [; var[{,var}] J

)READ# 7; Pip1 I Pip2
)READ# 8, 54; Twelve%, Strong&(2)

READ# gets information from a data file specified by its file number.
An optional record number may be included to specify a particular
record in a random-access file to begin reading. A variable list
following the file number (and optional record number, if included)
defines where to put the information being read.

The following table defines the conversion limits of the READ#
statement:

Variable Data Field Type Result

Real Real OK
Integer OK
Long Integer OK; Possible loss of accuracy
String ?TYPE MISMATCH ERROR

Integer Real OK in the range +-32767
" Integer OK

Long Integer OK in the range +-32767
String ?TYPE MISMATCH ERROR

Long Integer Real ?OVERFLOW ERROR if> +-E18
" Integer OK

Long Integer OK
String ?TYPE MISMATCH ERROR

String Real ?TYPE MISMATCH ERROR
Integer ?TYPE MISMATCH ERROR
Long Integer ?TYPE MISMATCH ERROR
String OK

Table 7-2. READ# Statement Conversion Limits.

REALS

::= [+I-J{digit}[.{digit}][E[+I-]digit[digit]]

: := [+I-][digit]. [{digit}][E[= 1-]digit[digit]]

A real is any positive or negative number, and may have a fractional
part. A numeric constant with a decimal point is always of type real,
even if it has only zeros to the right of the decimal point. However,
not all reals must have decimal points.

Reals whose absolute values are greater than or equal to .01 and less
than 999999.2 are expressed in conventional notation. For example,
1, +1, -1., 3.14, 999.999, and -0.2 are all real numbers expressed in
conventional notation.

A real may also be expressed in scientific notation, such as 3.3E2,
-3.3E4, 3.3E-4, or -3.3E-3. The real number 5.3E12, for example, is
equal to 5.3 times 10 raised to the 12th power.

Here are examples of conventional notation vs. scientific notation.

Conventional Notation

300
320
.44
-.033
1000000000000

Scientific (E) Notation

3E2 = 3*(1 0 "2)
3.2E2 = 3.2* (1 0 "2)
4.4E-1 = 4.4*(10"-1)
-3.3E-2 = 3.3*(10"-2)
1E12 = 1*(10"12)

Reals must be within the range -1. 7E38 to 1. 7E38 or an ?OVERFLOW
ERROR occurs.

REG

::= REC(filenum)

REC returns the current record number of the file specified by the
value of the arithmetic expression following the reserved word REC.

If you use the INPUT# or READ# statements to access the catalog of
a directory, REC returns the number of the line currently being
accessed.

REC has the same error conditions as the TYP function.

REM
::=REM anything

)100 REM This can be a lifesaver.

The reserved word REM must be the first thing in a remark statement
or the statement will not be treated as a remark. REM statements
must not exceed 250 characters in length. If you comment your
programs heavily, use several REM statements in successive lines
rather than using one very long remark.

RENAME
::=RENAME pathname1, pathname2

)RENAME /Fioppy2/ Animals/Dogs, /Fioppy2/ Animals/Pigs

RENAME is used to change the names of volumes, subdirectories,
and local files. RENAME's argument list is composed of the old
pathname, followed by a comma, followed by the new path name.

You cannot use the RENAME statement to create a file or
subdirectory, only to rename an existing one. Use the CREATE
statement to make new files and root directories.

A local filename or subdirectory may not be changed to another
volume name or subdirectory.

RESET
Pressing the RESET button is equivalent to pressing CONTROL-C.
except that RESET clears some program stacks and pointers, and you
cannot use an ON KBD or ON ERROR statement to handle RESET.

RESTORE
::=RESTORE

RESTORE moves the data list pointer back to the beginning of the
data list, allowing you to read the same data more than once.
RESTORE has no parameters or options.

RETURN

::=RETURN

RETURN has no parameters or options. When executing a RETURN
statement, BASIC removes one pointer from the top of the program
stack and branches to the statement indicated by the pointer. This is
the statement immediately following the most recently executed
GOSUB statement, unless a POP statement has been executed since
the most recent GOSUB was encountered.

If BASIC attempts to execute one more RETURN statement than it
has pointers on the program stack, the ?RETURN WITHOUT GOSUB
ERROR occurs.

RIGHT$

::= RIGHT$(sexpr, aexpr)

)PRINT RIGHT$("Appleskin" +"Ware", 8)
skin Ware
)B$=RIGHT$("Fruitbat", 3): PRINT B$
bat

RIGHT$ returns a string of specified length composed of the
rightmost characters of the given string expression.

RND

::= RND(aexpr)

)PRINT RND(8)
.830965
)

The RND function returns a random real positive number less than 1.

RND generates a new random number each time it is used if the
argument value is greater than zero.

RUN
::= RUN [pathname[, linenum]]j[linenum]

)RUN
)RUN 205
)RUN Marathon
)RUN Assets, 7254

RUN is used to start running a program. When a RUN statement is
entered, BASIC clears all variables, closes all open files excef:>t
executing text files, and begins to execute the program i~memory
beginning with its smallest line number, or at the line number
indicated. A program on disk can be run by following RUN with the
program's pathname.

If you specify a non-existent line number, an ?UNDEF'D STATEMENT
ERROR appears. If the file you specify is not found after searching
the disk, a ?FILE NOT FOUND ERROR occurs.

SAVE

::=SAVE pathname

SAVE writes a copy of the program currently in memory to a disk file.
You must specify the file to be saved by following the reserved word
SAVE with a pathname. If there is already a BASIC program with the
same path name on the disk, it will be overwritten and lost. If a locked
BASIC program with the same name is on the disk, you ~ill get a
?FILE LOCKED ERROR. If a file on the disk having the specified
name is not a BASIC program, a ?TYPE MISMATCH ERROR occurs.

SCALE

: := SCALE(variable name, aexpr)

)A&=12345678901234567
)PRINT USING "$$20&#.##";SCALE(-2,A&)
$123,456,789,012,345.67

SCALE is used in conjunction with PRINT USING to shift the decimal
point of a displayed value to the left or the right. SCALE uses two
arithmetic expressions as arguments. The first argument defines the
number of places to the right that the decimal point should be
moved. The second argument is the actual numeric value to be
output.

The resulting exponent of the value must be between -99 and +99,
or an ?ILLEGAL QUANTITY ERROR occurs.

SCISPEC

: := [+ 1-] [sci part] [fracpart] exp

)PRINT USING "+#.4#4E"; 3.1415926
+3.1416E+00
)PRINT USING "+.4#4E"; 3.1415926
+.3142E+01

The scientific-notation specification (scispec) formats numeric output
in scientific notation. The scispec is simpler than the fixspec, having
either one digit or none to the left of the decimal point.

"#" characters, either stated explicitly or by a repeat factor define the
number of digits to the right of the decimal point. The exponent
position is defined with the letter E, and a repeat factor is legal.

Either three or four character positions must be allowed for the
exponent.

When the spec calls for one digit position to the left of the decimal
point, the first significant digit of the value is placed there; when
there is no digit position to the left of the decimal point, the most

significant digit is placed to the right of the decimal point. In either
case, the exponent is then calculated to make the displayed value
correct.

SGN

::= SGN(aexpr)

)PRINT SGN(-234)
-1
)PRINT SGN(2496+234)
1
)PRINT SGN(5E4-5E4)
0
)

Returns -1 if the argument value is negative, returns 0 if the value of
the argument equals 0, and returns 1 if the argument value is
positive.

SIN

::= SIN(aexpr)

)PRINT SIN(2.718)
.411038
)

Returns the sine of an angle given in radians.

SPC

::= SPC(aexpr)

)PRINT "A"; SPC(1); "B"; SPC(2); "C"
ABC
)PRINT "D"; SPC(5); "E"; SPC(5); "F"
D E F
)SPC(250)SPC(139)SPC(255)

SPC is used in PRINT statements to define (by the expression
enclosed in parentheses) the number of spaces to be inserted after
the last-printed character.

Each SPC statement is limited to a maximum value of 255, but you
can place as many spaces as you wish by stringing together a series
of SPC statements.

SQR

: := SQR(aexpr)

)PRINT SQR(32+42)
5
)

Returns the positive square root of the argument value.

STEP

::= STEP(aexpr)

)2000 FOR Farenheit=1 to 451 STEP 3: NEXT
)2005 PRINT "Fire!!!"
)87 FOR Counter=10 to -10 STEP -1 ... NEXT Counter

STEP allows you to increment (or decrement) the control variable of a
FOR ... NEXT loop (described earlier) by integer steps other than 1. If a
negative value is specified in a STEP clause, the loop counts
backwards. If a positive value is specified, the loop runs forward.

STOP

::=STOP

STOP halts execution of a program, terminates any executing text
file, returns BASIC to immediate execution, resets the output file to
.CONSOLE, and redisplays the prompt character. STOP displays a
message, for example

?BREAK IN 8712

where 8712 is the line number of the program line containing the
STOP statement. The program in memory is not altered in any way.
STOP has no options associated with it.

STR$

::= STR$(aexpr)

)PRINT STR$(25/3)
8.33333
)PRINT STR$(1 00000000000) +"More"

1E+11More
)

STR$ evaluates a given arithmetic expression and returns the value
as a string.

Strings

A string is a sequence of characters. String variable names must
end with a dollar sign ($). Strings may contain from 0 characters (the
null string) to 255 characters. The number of characters in a string is
referred to as its length. Strings are not fixed in length, but may grow
or shrink as necessary.

When a program is run, all string variables initially contain the null
string.

SUB$

::= SUB$(svar, aexpr [,aexpr]) = sexpr

)F$="Hardware" : SUB$(F$,1)="Soft" :PRINT F$
Software
)F$= "Hardware" : B$= "Soft" : SUB$(F$, 1 ,2)= B$: PRINT F$
Sordware
)

SUB$ lets you replace any part of a string with a specified substring.
The string to be changed can be any string variable, and the
substring may be the value of any string expression. You must specify
the first character in the string to be changed by following that string
with an arithmetic expression.

You may optionally include a second arithmetic expression to specify
the number of characters in the substring to replace characters in the
original string.

SWAP

::= SWAP var1, var2

)SWAP Tick,Tock
)SWAP Old$,New$

SWAP exchanges the value stored in one variable for the value stored
in another. You can use string, long integer, regular integer, and real
variables with SWAP, but both variables must be of the same type.

TAB

::= TAB(aexpr)

)PRINT "Great";TAB(8); 347
Great347
)PRINT "Underhanded"; TAB(8); 553
Underhanded553

TAB is used in PRINT statements to define the number of spaces from
the left margin of the text window to begin printing text. If you
specify an expression that is less than the number of the current
print position, no spaces will be inserted before the next character to
be printed.

TAN

::= TAN(aexpr)

)PRINT TAN(3.141)
-5.92653E-04
)

Returns the tangent of an angle given in radians.

TEN

::= TEN(sexpr)

)PRINT TEN(" HEXNUM 030C")
)PRINT TEN("CCCC")

TEN returns the decimal (base 10) equivalent of the last four
characters of the given string expression. The value returned will be
in the range -32768 to 32767. The last four characters of the value of
the given string expression must represent a hexadecimal value; if
not, an ?ILLEGAL QUANTITY ERROR results.

TEXT

::=TEXT

The TEXT statement sets the display screen to the usual full-screen
text mode, clearing any other text or graphics mode in use, and
displays a prompt and the cursor on the next line down at the left
margin.

TRACE

::=TRACE

)TRACE
)RUN Sammy

TRACE prints a"#" followed by the number of each line of a program
as it executes. TRACE has no options.

After some study of the results, you would hopefully know what made
Sammy run, whether correctly or not. TRACE is switched off by
rebooting, LOAD pathname, RUN pathname, or by typing NOTRACE.
CHAIN or RUN do not cancel TRACE.

TYP
::= TYP(filenum)

)ON TYP(3) GOSUB 1 000,1200,1400,1600,1800,2000

TYP is used to determine what type of data will be read from a
particular file on the next access to that file. The argument to the
function can be any arithmetic expression, but its value must specify
a particular file reference number. The number returned by the TYP
function denotes what type of data will next be read from the
specified file.

For a data file, TYP returns the following values:

Value

0
1
2
3
4
5

Meaning

File type indeterminate
Next datum is Real
Next datum is Integer
Next datum is Long Integer
Next datum is String
End of file

For a text file, TYP always returns the value 8. If there are no more
characters in the file, the value returned is 5.

If the type of a file is as yet undetermined (i.e., whether it is a data or
text type) a zero value will be returned for the TYP function.

UNLOCK

See LOCK.

VAL

::= VAL(sexpr)

)PRINT 10 * VAL("1.3E4")
)PRINT VAL("13" + "77")

VAL evaluates a given string expression and returns the value as a
real or an integer number.

If any character of the string expression value evaluated is not a legal
numeric character (leading spaces are acceptable), a ?TYPE
MISMATCH ERROR occurs.

If the absolute value of the number represented by the value of the
string expression is greater than 1 E38, an ?OVERFLOW ERROR
occurs.

A string expression value containing more than 255-characters
causes a ?STRING.TOO LONG ERROR~

VARIABLE TYPES

There are four elementary variable types·in Apple Business BASIC:
integers, reals, long integers, a:nd strings. The first three types
represent numbers of various kinds, ~~e last type represents
sequences of characters.

The type of a variable is determined by the last character of its name:
%for integer,$ for string, and & for long integer. In the absence of
any of these special trailing characters, the variable type is
considered to be real by default.

Here are examples of names of the four variable.types:

Variable Name

Length
Marbles?%
Light. Years&
Myname$

Variable Type

real
integer
long integer
string

VPOS and HPOS

These modifiable reserved variables contain the vertical and
horizontal positions, respectively, of the current print position.
Changing their values will change the current print position (and the
cursor's position). The position of the cursor may be found by
accessing the values of VPOS and HPOS.

Assigning values greater than the height of the text window to VPOS,
causes the cursor to move to the bottom screen line within the
window. Assigning values greater than the width of the text window
to HPOS causes the cursor to move to the right margin of the
window. The value 0 is converted to the value 1. Assigning values
outside the range 0 to 255 to either VPOS or HPOS causes the
?ILLEGAL QUANTITY ERROR message to appear.

WINDOW

::= WINDOWaexpr1, aexpr2TO aexpr3, aexpr4

WINDOW allows you to set the position and size of the text window, a
rectangle within the total screen area where BASIC may display text.
For example:

)WINDOW 37,9TO 44,16

The first pair of numbers specifies the horizontal and vertical
coordinates of the upper left corner of the text window, and the
second pair specify the coordinates of the lower right corner. The
example above will create a text window 8 columns wide and 8
screen lines high, in the center of your screen. When a WINDOW
statement is executed, the cursor moves to the lower left corner of
the specified window.

WINDOW statement coordinates may be specified by any arithmetic
expression. Each of the four expressions must have a value within
the range 0 to 255, or an

?ILLEGAL QUANTITY ERROR

message will be displayed. If your values would make the window
larger than the maximum allowed screen size, the window is
truncated to fit.

WRITE#

::=WRITE# filenum [, recnum] [; expr[{, expr}]]

)WRITE# 3; MAJOR%, MINOR%, XLOW
)WRITE# 4, 11; MAP(1 ,3 ,5,7,9)

WRITE# sequentially writes the value of each item in its expression
list to a field in a specified data file. You may optionally follow the file
number with a comma and an arithmetic expression specifying a
record number at which to begin access. The list of expressions must
follow the file number (or optional record number), and the
expressions in the list must be separated by commas.

One line of data is written for each expression in the list. WRITE#
performs no numeric to string type conversions while transferring
information from the expressions to the file, it just writes a binary
image of numeric data to the file.

If a record number is specified, then the value of the first expression
in the expression list is written to the first field in the specified
record. Otherwise, records are accessed sequentially.

If there is not enough room left in a record to hold the next value, the
field will be written in the next record. Note that writing data to a
record causes any old data in the record to be lost. If an attempt is
made to write a data field longer than the record length specified
when the file was created, the message

?OUT OF DATA ERROR

is displayed.

BUTTON and POL

::=BUTTON(0<= aexpr<= 3)
::=POL(0 <= aexpr <= 3)

Why are these statements here in this chapter? They are the only
statements in Business BASIC that require plugging in an external
device to obtain some reasonable results. For more information about
port A and port B, refer to the Apple Ill Owner's Guide.

BUTTON returns a value depending on the state of the switch
specified by its argument. BUTTON(O) and BUTTON(1) are associated
with the device connected to port B on the back of your Apple Ill, and
BUTTON(2) and BUTTON(3) specify those connected through port A.

If the switch is closed (button pushed), a value of 255 is returned;
otherwise, BUTTON returns 0.

POL returns a value ranging from 0 to 255, depending on the position
of the specified axis of a joystick (or equivalent device) plugged into
port A or port B at the back of the Apple Ill. Some examples follow:

10 IF SGN(BUTTON(2)) THEN GOTO 1050: ELSE GOTO 2300
20 VPOS =(POL(0)/1 0) : HPOS =(POL(1)/30)

ASCII is an acronym for American Standard Code for Information
Interchange.

The range of standard ASCII codes extends from 0 to 127. Apple
Business BASIC also treats the range of values 128 to 255 as valid
codes. Certain otherwise unused keystroke combinations are used
to represent the additional characters that your Apple Ill can display
(see the chart below).

Legend:

DEC: ASCII code in decimal notation.

HEX: ASCII code in hexadecimal notation.

CHAR: ASCII mnemonics.

CONTROL: Holding down the CONTROL key, while
simultaneously pressing any other key
generating an ASCII character in the range
from decimal 64 to 95 causes the character
generated to be equal to the normal character
code generated minus decimal 64. Thus,
CONTROL-A is 1. Codes below decimal 64 are
not affected: ! is a decimal 33 and CONTROL-!
is also 33.

Control Characters

DEC HEX CHAR Keyboard Action Comments and Notes
0 00 Null CONTROL-@ Null
1 01 SOH CONTROL-A
2 02 STX CONTROL-S
3 03 ETX CONTROL-C Halts execution
4 04 ET CONTROL-0
5 05 ENQ CONTROL-E
6 06 ACK CONTROL-F
7 07 BEL CONTROL-G Beeps speaker
8 08 BS CONTROL-H Backspace, (same as<--)
9 09 HT CONTROL-I Horiz. tab

10 OA LF CONTROL-J Linefeed
11 08 VT CONTROL-K Vert. tab
12 oc FF CONTROL-L Formfeed
13 00 CR CONTROL-M Car. return (same as RETURN)
14 OE so CONTROL-N
15 OF Sl CONTROL-0
16 10 OLE CONTROL-P
17 11 DC1 CONTROL-Q
18 12 DC2 CONTROL-A
19 13 DC3 CONTROL-S
20 14 DC4 CONTROL-T
21 15 NAK CONTROL-U
22 16 SYN CONTROL-V
23 17 ETB CONTROL-W
24 18 CAN CONTROL-X Cancels line being edited
25 19 EM CONTROL-Y
26 1A SUB CONTROL-Z
27 18 -ES9 ESCAPE Cursor control and editing
28 1C FS CONTROL-SLASH
29 10 GS CONTROL

RIGHT BRACKET
30 1E RS CONTROL-"
31 1F us CONTROL

SHIFT UNDERLINE

~ See your Apple Ill Standard Device Drivers manual for
additional explanations of how control characters
can effect the operation of your Apple.

Uppercase Letters, Numbers, Symbols

DEC HEX CHAR Keyboard

32 20 Space Spacebar
33 21 ! !
34 22
35 23 # #
36 24 $ $
37 25 % o;o
38 26 & &
39 27
40 28
41 29
42 2A * *
43 28 + +
44 2C
45 2D
46 2E
47 2F I I
48 30 0 0
49 31 1 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A
59 38
60 3C < <
61 3D
62 3E > >
63 3F ? ?

Uppercase Letters, Numbers, Symbols

DEC HEX CHAR Keyboard

64 40 @ @
65 41 A A
66 42 B B
67 43 c c
68 44 D D
69 45 E E
70 46 F F
71 47 G G
72 48 H H
73 49 I I
74 4A J J
75 48 K K
76 4C L L
77 40 M M
78 4E N N
79 4F 0 0
80 50 p p
81 51 Q Q
82 52 R R
83 53 s s
84 54 T T
85 55 u u
86 56 v v
87 57 w w
88 58 X X
89 59 y y
90 SA z z
91 58 [[
92 5C \ \
93 50]]
94 5E " " 95 SF

Lowercase Letters and Symbols

DEC HEX CHAR Keyboard

96 60
97 61 a a
98 62 b b
99 63 c c

100 64 d d
101 65 e e
102 66 f f
103 67 g g
104 68 h h
105 69
106 6A j j
107 68 k k
108 6C I I
109 60 m m
110 6E n n
111 6F 0 0

112 70 p p
113 71 q q
114 72 r r
115 73 s s
116 74 t t
117 75 u u
118 76 v v
119 77 w w
120 78 X X

121 79 y y
122 7A z z
123 78 { {
124 7C I I
125 70 } }
126 7E

Errors

When BASIC detects a program error during deferred execution, it
checks to see if an ON ERR statement is in effect. If so, program
execution jumps to the statement list following the reserved words ON
ERR. If not, BASIC halts execution of the program, displays a brief
error message, and returns you the prompt and cursor. Variable values
and the program text remain intact, but the program can not be
continued. All program stacks and FOR/NEXT loop counters are reset
to 0.

Errors in a deferred execution statement are not detected until that
statement is executed.

Format of Error Messages
When an error occurs in an immediate execution statement, an error
message is immediately displayed. For example,

)PRINT MID$(234)
?TYPE MISMATCH ERROR
)

When an error occurs in a deferred execution statement, an error
message is displayed, complete with the line number of the
erroneous statement. For example,

)10 PRINT MID$(234)
)RUN

?TYPE MISMATCH ERROR IN 1 0
)

Error Messages
The following is an alphabetical listing of all of the possible BASIC
error messages, complete with possible explanations for why the
error occurred.

?BAD PATH ERROR

This error message will be displayed if you specify either a pathname
of a nonexistent file, or include an illegal character in the pathname.

?BAD SUBSCRIPT ERROR

An attempt was made to reference an array element that is outside
the bounds of the array. There are two primary causes of this error:

• attempting to access a nonexistent dimension in an array; for
example:

)DIM TIMES(23,59)
)TIMES(11 ,30,27)= Trigger

• attempting to access a nonexistent element in any dimension.
For example,

)DIM Dates(11 ,30,2000)
)Dates(8,28,2001) = -1

?CAN'T CONTINUE ERROR

This error will occur if you are attempting to continue a program after
modifying anything other than the variables in the current program.

?DATA WON'T FIT ERROR

An attempt was made to write more bytes of data to a record in a disk
file than will fit.

?DEVICE NOT FOUND ERROR

There are three possible causes:

• the device you are referring to is not properly connected;

• your system is not configured for the device you specify;

• the device name you specify includes an illegal character.

?DISK FULL ERROR

There is no space left for additional information on the disk. Either
delete files or use another disk.

?DIVISION BY ZERO ERROR

The dividend of any number divided by 0 is infinity. Infinity as such is
not illegal, but it does exceed the bounds of memory to store it,
which is an error.

?DUPLICATE FILE ERROR

An attempt was made to rename a file to a name that already exists
on the current disk.

?EXTRA IGNORED

More values were supplied than were asked for by INPUT statement.

?FILE LOCKED ERROR

An attempt was made to modify a locked file.

?FILE NOT FOUND ERROR

An attempt was made to access a file that does not exist on the disk.

?FILE NOT OPEN ERROR

An attempt was made to access a file before opening it with the
OPEN statement.

?FILE TOO LARGE ERROR

The file exceeds the size limit for its type as set by SOS.

?FILES BUSY ERROR

This error will occur if you attempt to delete or rename a file while it is
open.

?FORMULA TOO COMPLEX ERROR

This error has two possible causes:

• parentheses in an expression are nested more than 14 deep;

• an attempt was made to evaluate an arithmetic expression
with more than 14 pending operations caused by precedence.

?ILLEGAL DIRECT ERROR

Given when an INPUT, DEF FN, GET, RESUME, ON ERR, ON KBD, or
ON EOF# statements are used in immediate execution; they may only
be used in deferred execution.

?ILLEGAL QUANTITY ERROR

The parameter passed to a function was out of range. ILLEGAL
QUANTITY errors can be caused by:

• a negative array subscript (for example, A(-1));

• using the LOG function with a negative or zero argument;

• using the SQR function with a negative argument;

• using MID$, LEFT$, RIGHT$, VPOS, HPOS, SPC, WINDOW,
TAB, SUB$, CHR$, HEX$, TEN, INSTR, SCALE, or ON ... GOTO
with an expression whose value lies outside the allowable
range;

• opening a file with a record length Jess than 3;

• specifying a file number less than 1 or greater than 1 0;

• using a repeat value greater than 255 in a PRINT(#) USING
statement or an IMAGE specification;

• a value with an integer range (-32768 to 32767) was expected,
but a value beyond that range was encountered.

?INVOKE ERROR

The pathname given in an INVOKE statement specified a non
invokable file.

?1/0 ERROR

A physical operation of a peripheral failed. Either a mechanical or
electrical problem caused a loss of data: check all external device
connections for possible problems. (Is everything plugged in
properly?)

?NEXT WITHOUT FOR ERROR

There are three possible causes:

• improper nesting of loops; control variables in a NEXT
statement must be listed in the reverse order that they were
encountered in FOR statements;

• the control variable specified in a NEXT statement does not
correspond to the variable in any FOR statement still in
effect;

• a NEXT statement without a specified control variable was
executed when no FOR statement was in effect.

?NOT SOS ERROR

The diskette being accessed is not SOS-formatted.

?OUT OF DATA ERROR

There are two possible causes:

• READ statement was executed but all of the data elements in
DATA statements in the program have already been read.

• a READ# or WRITE# statement ran out of data when reading
from a file; in other words, an end of file was reached.

?OUT OF MEMORY ERROR

There are four possible causes:

• there is no memory available for a file buffer when you open a
file.

• program too large.

• an invoked file will not fit in the available memory.

• too much space used by variables.

?OVERFLOW ERROR

The result of a calculation was too large to be represented in BASIC
number format. In other words, the absolute value of the number is
greater than 1.7E38.

?PATH NOT FOUND ERROR

Part of the pathname specified was invalid: either part of the
pathname specified is nonexistent, or an illegal character has been
included.

?RANGE ERROR

An illegal line range was specified in a DEL or LIST statement.

?REDIM ERROR

After an array was defined, another DIM statement for the same array
was executed. This error often occurs if an array has been given the
default dimension 10 because a statement such as A(l)=3 is followed
later in the program by a DIM A(100).

?REENTER

Value given for INPUT is of wrong type.

?RETURN WITHOUT GOSUB ERROR

More RETURN statements and/or POP statements were executed
than GOSUB statements.

?SOS CALL ERROR

An error occurred within your Apple's operating system, SOS, that is
not recognized by BASIC.

?STACK OVERFLOW ERROR

There are three possible causes:

• FOR/NEXT loops nested more than 9 deep;

• subroutines nested more than 23 deep;

• ON KBD subroutines have been entered more than 27 times
without a RETURN.

?STRING TOO LONG ERROR

The value of a string expression is greater than 255 characters in
length.

?SYNTAX ERROR

Any of the following can cause this error:

• missing parenthesis in an expression;

• illegal character in a statement;

• ON not followed by GOTO or GOSUB;

• IF not followed by THEN or GOTO;

• arithmetic operation on a string;

• a digit as the first character of variable name;

• attempt to use something other than a real for a user defined
function;

• variable name over 64 characters in length;

• bad specification in an IMAGE format;

• bad AS option for OPEN#;

• bad operator;

• following DEL with something besides a digit;

• anything else that is not syntactically correct.

?TYPE MISMATCH ERROR

Any of the following can cause this error:

• the left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or vice versa;

• a function which expected a string argument was given a
numeric one, or vice versa;

• exponentiation with long integer values;

• specifying a non-BASIC file when a BASIC file was expected;

• using a non-real variable when a real variable was expected;

• using strings in an IF. .. THEN statement;

• wrong IMAGE specification for string/numeric in PRINT(#)
USING statement;

• READ# numeric data when next data is a string, or vice
versa.

?UNDEF'D FUNCTION ERROR

Reference was made to a user-defined function which had never
been defined.

?UNDEF'D STATEMENT ERROR

Any of the following can cause this error:

• An attempt was made to GOTO, GOSUB or THEN to a
statement line number which does not exist or has been
deleted;

• PRINT USING line when line does not exist;

• IMAGE is not the first statement in the line, or the IMAGE list
is null.

?VOLUME NOT FOUND ERROR

The volume name specified by an 1/0 statement does not match the
volume name of the disk.

?WRITE PROTECT ERROR

The files on the diskette cannot be modified because the disk's write
protect notch is covered.

ERROR CODES

When BASIC detects an error, the reserved variable ERR will contain
a number code corresponding to the following table.

Error Code

1
2
3
4
5
6
7
8
9

Error Code Table

Error Description

NEXT WITHOUT FOR
SYNTAX
RETURN WITHOUT GOSUB
OUT OF DATA
ILLEGAL QUANTITY
OVERFLOW
OUT OF MEMORY
UNDEFINED STATEMENT
BAD SUBSCRIPT

10 RANGE
11 INVOKE
12 STACK OVERFLOW
13 REDIM'D ARRAY
14 DIVISION BY ZERO
15 ILLEGAL DIRECT
16 TYPE MISMATCH
17 STRING TOO LONG
18 FORMULA TOO COMPLEX
19 CAN'T CONTINUE
20 UNDEF'D FUNCTION
22 SOS CALL
23 FILES BUSY
24 NOT SOS
25 1/0
26 FILE TOO LARGE
27 WRITE PROTECT
29 BAD PATH
30 FILE NOT FOUND
31 PATH NOT FOUND
32 VOLUME NOT FOUND
33 DUPLICATE FILE
34 DISK FULL
35 FILE LOCKED
36 FILE NOT OPEN
37 DEVICE NOT FOUND

253 EXTRA IGNORED
254 REENTER
255 BREAK (CONTROL-C)

The following is an alphabetical list of the reserved words in Apple
Business BASIC. Note that some must end with a left parentheses to
be considered reserved words. For example, AND is an illegal variable
name, but ASS is not.

ASS(
AND
AS
ASC(
ATN(
BUTTON(
CAT
CATALOG
CHAIN
CHR$(
CLEAR
CLOSE
CONT
CONV(
CONV$(
CONV%(
CONV&(
COS(
DATA
DEF
DEL
DELETE

DIM
DIV
ELSE
END
EOF
ERR
ERRLJN
EXFN.
EXFN%.
EXP(
EXTENSION
FN
FOR
FRE
GET
GOSUB
GOTO
HEX$(
HOME
HPOS
IF
IMAGE

INPUT
INSTR(
I NT(
INVERSE
INVOKE
KBD
LEFT$(
LEN(
LET
LIST
LOAD
LOCK
LOG(
MID$(
MOD
NEW
NEXT
NORMAL
NOT
NOTRACE
OFF
ON

OPEN
OR
OUTPUT
POL(
PERFORM
POP
PREFIX$
PRINT
READ
REC(
REM
RENAME
RESTORE
RESUME
RETURN
RIGHT$(
AND(
RUN
SAVE
SCALE(
SGN(
SIN(

SPC(
SQR(
STEP
STOP
STR$(
SUB$(
SWAP
TAB(
TAN(
TEN(
TEXT
THEN
TO
TRACE
TYP(
UNLOCK
USING
VAL(
VPOS
WINDOW
WRITE

Simple Variable Format
Every simple variable in Apple Business BASIC has an entry in
memory with the following format:

TYPE I VALUE

LENGTH is a one byte field that contains the size of the entire
variable entry in bytes.

NAME is a field of variable length that contains the ASCII code
of the simple variable name. NAME is between 1 and 64 bytes
in length.

TYPE is a one byte field that contains a code for the type of the
simple variable. For reals TYPE=O, for long integers
TYPE=$40, for integers TYPE=$80, and for strings TYPE=$FF.

VALUE is a field which contains the value of the variable. The
length and contents of the VALUE field depend upon the
variable type. Two-byte fields contain the high-order byte first
and the low-order byte second:

Type Byte Contents

Integer 0 high byte
1 low byte

Real 0 exponent/sign
1-4 mantissa

String 0 length
1 high byte of location
2 low byte of location

Long integer 0 low byte
7 high byte

Array Variable

Every array variable in BASIC has an entry in memory with the
following format:

LENGTH is a two byte field that contains the size of the entire array
;

variable entry in bytes.

NAME is a field of variable length that contains the ASCII characters
of the array variable name. NAME is between 1 and 64 bytes in length.

TYPE is a one byte field that contains a code for the type of the
simple variable. For reals TYPE=O, for long integers TYPE=$40, for
integers TYPE=$80, and for strings TYPE=$FF.

S.COUNT is a one byte field that contains the number of subscripts in
the array variable.

D.SIZE is a field that contains the size of each dimension in the array.
Its length, in bytes, is equal to twice the number of dimensions.

VALUES is a field containing the values of each of the array elements.
The array elements are stored with the rightmost index ascending
slowest. The length and contents of the VALUES field depend upon
the variable:

Type Byte Contents

Integer 0 high byte
1 low byte

Real 0 exponent/sign
1-4 mantissa

String 0 length
1 high byte of location
2 low byte of location

Long integer 0 low byte
7 high byte

In order to make your program fit into less memory space, the
following hints may be useful.

1. Use integer instead of real arrays wherever possible (see
STORAGE ALLOCATION INFORMATION later in this appendix, and
the appendix VARIABLE MAPS).

2. Use variables instead of constants. Suppose you use the constant
3.14159 ten times in your program. If you insert a statement

)10 P=3.14159

in the program, and use P instead of 3.14159 each time it is needed,
you will save 40 bytes. This will also result in a speed improvement.

3. The END statement is strictly optional. You can save a byte or two
by omitting it from your programs. Don't forget to use END to prevent
your program from 'crashing' into its own subroutines, though.

4. Re-use the same variables. If you have a variable Twhich is used to
hold a temporary result in one part of the program and you need a
temporary variable later in your program, use T again. Or, if you are
asking the computer user to give a YES or NO answer to two
different questions at two different times during the execution of the
program, use the same temporary variable to store the reply.

5. Use GOSUB statements to execute groups of program statements
that perform identical actions.

6. Use the zero elements of arrays; for instance, A(O), B(O,X).

7. When A$="Cat" is reassigned to A$="Dog" the old string "Cat" is
not erased from memory. Using a statement of the form

X= FRE

periodically within your program will cause BASIC to reorganize
string storage so that memory space is used more efficiently.

In serious cases only, try the following tricks. But
remember that these will make your program harder
for someone else to read, harder to debug, and
generally less desirable ... but you will save memory!

8. Use multiple statements per line. There is a small amount of
overhead (4 bytes) associated with each line in the program.

9. Remove all the REM statement lines from your program.

If you do either of the above, you should consider keeping a copy of
the program that has REM statements and single-statement lines.

Storage Allocation Information

When a new function is defined by a DEF statement, 6 bytes are used
to store the pointer to the definition. Reserved words such as FOR,
GOTO, or NOT, and the names of the intrinsic functions such as COS,
INT, and STR$ take up only one byte of program storage. All other
characters in programs use one byte of program storage each.

When a program is being executed, space on the stack is used as
follows:

• Each active FOR. .. NEXT loop uses at least 16 bytes.

•

•

Each active GOSUB (one that has not RETURNed yet) uses at
least 6 bytes.

Each set of parentheses used in an expression uses 4 bytes,
and each temporary result calculated in an expression uses
12 bytes.

See the appendix VARIABLE MAPS for an
explanation of memory usage by variables and
constants.

This appendix discusses how much memory space is used by Apple
Business BASIC to store variables and constants. If you are a
beginning programmer, you might skip on, because the information
given here is not essential to learning how to program.

A byte is the smallest individually accessible unit of memory, and
each byte contains eight binary digits or bits. A 128K Apple Ill has
131072 bytes of memory. After BASIC and SOS have taken their
space, there is about 60K of memory available for you to use,
depending on the number and size of the drivers in your system. You
can find out how much space is available to you by typing

PRINT FRE

Constants
All constants require 1 byte of memory per digit, including"." and
"E" for reals. For instance, the constant

2.71828182846

uses 13 bytes.

Numeric Variables

One byte of memory is used for each character of a variable name
(up to a maximum of 64 bytes).

Each real variable uses 4 bytes of memory to store a value (3 bytes
for the mantissa, and 1 for the exponent). For example, the statement

)Parish =4977623

uses 12 bytes: 6 for the variable name, 4 for the value, and one each
for type and link bytes. The type byte tells BASIC what the type of the
variable being stored is, and the link byte tells BASIC where the next
variable in memory begins.

Each integer variable uses 2 bytes of memory for the value.

Each long integer variable uses 8 bytes of memory for the value.

Strings

Apple Business BASIC stores strings in two parts. The first part is the
string descriptor, and the second part contains the actual sequence
of characters in the string. The string descriptor is 3 bytes long: the
first byte of the string descriptor contains the string length, and the
last two bytes contain a pointer to the memory location of the first
character in the string.

In addition to the three descriptor bytes, each string variable uses
one byte for each character of the string name (except the final dollar
sign), 1 link byte, and 1 type byte, plus 1 byte for each character in
the string. An additional 3 bytes are needed for overhead, unless the
value of the variable is the null string. For example, the statement

)TR$ = ""

uses 7 bytes: 3 for the string descriptor, 2 for the string name, 1 for
the link, and 1 for the variable type. The statement

)STAR$= "WIX"

uses fifteen bytes: 3 for the string descriptor, 4 for the string name, 1
for the link, 1 for the variable type character, 3 for the string
characters, plus 3 overhead bytes.

Apple Business BASIC reserves part of memory as space to be used
solely by strings. Exactly how much memory is available for string
storage depends on how many other variables and arrays exist in a
program and the size of the program itself. When a string decreases
in length, BASIC does not immediately reclaim the freed memory
space. Instead, whenever BASIC sees that it is about to run out of
usable memory, it reorganizes string storage so that memory is used
more efficiently. All of the freed string storage space is then reused
by new strings.

Arrays

You can cause BASIC to reorganize memory space by
executing a FRE statement.

Each array requires the following amount of memory: 2 link bytes, 1
type byte, 1 byte per character of the array name, 1 byte recording
the number of array dimensions, and 2 bytes per dimension.

Each integer array element occupies 2 bytes of memory, real array
elements occupy 4 bytes, long integer array elements occupy eight
bytes, and string array elements occupy 3 bytes (the string
descriptors). For example, the statement

)DIM Paymt%(9,3,5)

in addition to the 480 bytes taken up by the array that it generates,
uses 15 bytes: 2 link bytes, 1 type byte, 5 bytes for the array name, 1
byte for the number of dimensions, and 6 bytes for the 3 dimensions.

For further information about memory usage, see the
appendices VARIABLE MAPS and SPACE SAVERS.

These hints should improve the execution speed of your Apple
Business BASIC programs. Note that some of these hints are the
same as those used to decrease the memory space used by your
programs. This means that in many cases you can increase the speed
of your programs at the same time you improve the efficiency of their
memory use.

1. This is the most important accelerator of all: Use variables instead
of constants. It takes more time to convert a constant to its floating
point (real number) representation than it does to fetch the value of a
simple or array variable. This is especially important within FOR/NEXT
loops or other code that is executed repeatedly.

2. Variables which are encountered first during the execution of a
BASIC program are allocated at the start of the variable table. For
example, this means that a statement such as

SA=O:B=O:C=O

will place A first, B second, and C third in the variable table
(assuming line 5 is the first statement executed in the program). Later
in the program, when BASIC finds a reference to the variable A, it will
search only one entry in the variable table to find A, two entries to
find B and three entries to find C.

3. Use NEXT statements without a specified control variable. NEXT is
slightly faster than NEXT A because no check is made to see if the
control variable specified in the NEXT is the same as the control
variable in the most recently executed FOR statement.

4. When BASIC branches to a new line number, one of two things
happens depending on whether the line number is lower than the
currently executing line, or higher. If it is a lower number, such as:

)1001 GOTO 1000

BASIC scans the entire program starting at the lowest line until it
finds the referenced line number (1 000, in this example). If the new
line number is greater than the current line, BASIC only has to search
forward from the current line. Here's an example:

)1001 GOTO 2048

5. You can make your program run faster if you can put often
repeated groups of statements (such as subroutines) at the
beginning of a program.

6. FOR/NEXT loops execute faster than loops constructed with GOTO
statements.

Syntax Notation
The method used in this Appendix to describe Apple Business BASIC
syntax is almost a simple language in itself. After you get used to it, it
will speed your understanding of what is syntactically correct.

The syntax of a language is a body of rules that defines the various
language elements and how they may be combined. There are simple
elements that are combined into compound elements, which in turn
can be combined into expressions and statements.

An element is defined like this:

(element to be defined) ::= (some combination of previously
defined elements).

Any uppercase letters or punctuation marks appearing on the right
side of the definition must be typed exactly as shown. Lowercase
letters represent free information that you must fill in. For example, in
the definition

goto statement::= GOTO linenum

the letters "GOTO" must be typed just as shown, followed by any
legal line number.

Some definitions have two or more lines containing ::= in them.
These lines are equivalent definitions for a given key word.

To combine elements, the following symbols are used. Note that you
do not type them when you are entering a program! They are for
purposes of describing syntax only!

I separate alternative elements.
[] enclose optional elements.
{} enclose repeatable elements that must occur at least

once.
\ \ enclose elements whose values are to be used.

indicates that adjacent elements must be separated
by delimiters. Delimiters are defined later.

Here's an intuitive example of how this system is used to describe the
various parts of BASIC's syntax. In this example, we'll use houses, as
they are familiar places to most of us:

house
:: = roof{ door}{ window} [fireplace][all-electric kitchen]

A house has a roof, one or more doors, one or more
windows, and may have a fireplace and an all-electric kitchen.

home
:: = house! cottage! mansion

A home can be a house, cottage, or mansion.

price
::=\house\

The selling price is the value of the house.

suburban neighborhood
:: = house{ house}

Suburban neighborhoods have space between the houses.

urban neighborhood
::= house{house}

Urban neighborhoods have no space between houses.

This notational scheme is known as modified BNF (Backus-Naur
Form) after John Backus and Peter Naur, who first adapted it for use
with computer languages. Its essential features were invented in
ancient times by the Hindu scholar Panini, who was doing research
into the structure of Sanskrit.

The first half of this appendix is a list of all elements used in BASIC
statements. The second half of the Appendix is an alphabetical listing
of all BASIC statements.

Elements

Discrete Elements

letter

digit

::=A I e I c I o IE I F I a I H 11 I J I K I L I M I N I o I PI a I R Is I r I u I vI w I xI vIz I

alblcldleltlglhlililklllmlnlolplqlrlsltlulvlwlxlylzl

::= 1l2l3l4lslsl7lslsl o

line number (linenum)
::={digit} (between 0 and 63999)

special

character
::= lette~digitjspecial

alphanumeric character
::= letterjdigit

control character
::=A character generated by pressing a key while holding

down the CONTROL key. For example: CONTROL-G

prompt character
::=)

return
::=A press of the key marked RETURN.

Operands

name
::= letter({letterldigit 1.}]

subscript
:: = (arithmetic expression [{.arithmetic expression}])

variable name
::= name[%l$l&l [subscript]

array name
::=variable name [subscript]

integer
:: = [+1-H digit}

integer variable name
::=name%

integer variable (ivar)
::=name% [subscript]

real number

::=[+J-]{digit} [.{digit}][E[+1-l digit[digit]]

::=[+1-l[digit]. [{digit}][E[+1-l digit[digit]]

real variable name
::=name

real variable
:: = name [subscript]

long integer
::= [+!-]{digit}

long-integer variable name
::=name&

long-integer variable
::=name& [subscript]

control variable
::= real variablejinteger variable

literal
::=[{character}]

string
::= "literal"

null string
··- ""

string variable name
::=name$

string variable (svar)
:: = name$ [aexpr]

array variable name
::= name [%j$j&](aexpr{,aexpr})

arithmetic variable (avar)
:: = integer variable! real variable

long-integer arithmetic variable (liavar)
::= name& [subscript]

variable (var)
::= avarisvarjliavar

varible list (varlist)
::= var [{,var}]

reserved variable (resvar)

:: = ERRI KBDI EOFI ERRUNIHPOS IVPOSI FREI PREFIX$IINDENTIOUTREC

modifiable resvar
::= HPOSIVPOSIPREFIX$IINDENTIOUTREC

Operators

arithmetic unary operator (auop)
::= +1-

arithmetic binary operator (abop)

::= +1-1*111 "
arithmetic operator (aop)

::= aboplauop

long-integer arithmetic operator (liaop)
::= +1-i*I!IMoDIDIV

unary logical operator (ulop)
::=NOT

binary logical operator (blop)
::= ANDIORI =

1<1>1<>1 ><1>=1=> 1<=1=<1 <=>

logical operator (lop)
::= bloplulop

operator (op)
::= aopllop

long integer operator (liop)
::= liaopllop

long operator (sop)
::= +

string logical operator (slop)
::=lop

Expressions

string expression (sexpr)
::= sva~string
:: = sexpr sop sexpr

arithmetic expression (aexpr)
:: = ava~ real I i ntege~ resvar
::= auop aexpr
::= ulop aexpr
::= aexpr op aexpr
:: = sexpr slop sexpr

long-integer arithmetic expression (liexpr)
::= liava~long integer
::= auop liexpr
::= ulop liexpr
::= liexpr liop liexpr

expression (expr)
::= aexprjsexprjliexpr

logic expression (lexpr)
:: = aexprjliexpr

Additional Elements

filenum
::= expr

path name
:: = devnamelvolname[{/subdir}][f fname]

function name
:: = real variable name

recnum
::= aexpr

recsize
::= aexpr

spec
::=string spec I literal spec I fixspec I scispec I engrspec

rpt (repeat factor)
::=a whole number from 1 to 255

string spec
::= {[rpt] AICIR}

literal spec

A reserves a character position in a left-justified string. C
reserves a character position in a centered string. R
reserves a character position in a right-justified string.

::= {[rpt] Xl!lstring}

digitspec

An X means print a space. A I character means print a
return. A string must be in quotes. When a repeat factor is
placed in front of a string, it affects the entire string.

::= [rptl [{#lzl&}l. [rptl {#lzl&}
::= [rptl {#lzl&} [.J

reserves one numeric digit position; leading zeros
are replaced with spaces.

Z reserves one numeric digit position; leading zeros
are printed.

& reserves one position for a numeric digit or a comma;
commas are inserted after every third digit starting at the
decimal point and working left. Commas are included in
the character count and leading zeros are replaced with
spaces. At least five digit positions must be reserved to the
left of the decimal point.

fixspec
::= [**] [$] [+1-l digitspec
::= [**] [+1-l [$] digitspec
::= [**] [$] digitspec [+1-l
::= $$[+1-l digitspec
::= $$ digitspec [+1-l
::= [++1--l [$] digitspec

+ reserves a character position for the sign to be printed
in.

- reserves a character position for the sign. Sign is printed
if negative; otherwise a space is printed.

$ reserves a character position for a dollar sign.

** means print asterisks instead of spaces in unused
character positions.

+ + reserves the rightmost unused position(s) for the sign
(and following dollar sign if any).

--same as + + except the sign is replaced by a space if it is
positive.

$$ reserves the rightmost unused position(s) for a dollar
sign (and following numeric sign if any).

You cannot use$$,++, or-- if you use Z for the digitspec.

sci part
::= [rptl #IZ

fracpart
::= .[rpt] [{#IZ}l

exp
:: = EEEI EEEE

sci spec
:= [+1-l [scipart] [fracpart] exp

engrpart
::= ###IZZZ

engrspec
:= [+1-l engrpart [fracpart] exp

spec
::=string spec I literal spec I fixspec I scispec I engrspec

deferred statement
::= linenum statement return

immediate statement
::=statement return

statement! ist
::=statement [{:statement}]

Statements
ABS function

:: = ABS(aexpr)

ASC function
::= ASC(sexpr)

ATN function
::= ATN(aexpr)

BUTTON function
::= BUTTON(aexpr)

CATALOG statement
::= CAT[ALOG]

CHAIN statement
::=CHAIN filename [,linenum]

CHR$ function
::= CHR$(aexpr)

CLEAR statement
::=CLEAR

CLOSE statement
::=CLOSE[# filenum]

CONT statement
::= CONT

CONV function
::= CONV(expr)

CONV& function
::= CONV&(expr)

CONV% function
::= CONV%(expr)

CONV$ function
::= CONV$(expr)

COS function
::= COS(aexpr)

CREATE statement
::=CREATE pathname, CATALOGjTEXTjDATA [,aexpr]

DATA statement
:: = DATA [literal! stringj real! integerjlong integer]

[{, [literal! stringj real! integerjlong integer]}]

DEF FN statement
::= DEF FN functionname (real variable)= aexpr

DEL statement
::=DEL linenum1 [TOj,j-linenum2]

DELETE statement
::=DELETE pathname

DIM statement
:: = DIM array variable name

ELSE statement
::=:ELSE [aexprllinenum]

END statement
::=END

EXEC statement
::=EXEC pathname

EXFN. statement
::= EXFN. path name [(lexprl ,@var }]>]

EXFN%. statement
::= EXFN%. pathname [(lexprl @var[{,lexp~,@var}]}]

EXP function
::= EXP(aexpr)

FOR statement
::= FOR control variable = aexpr1 TO aexpr2 [STEP aexpr3]

FRE statement
::= FRE

GET statement
::= GETvar

GOSUB statement
::= GOSUB linenum

GOTO statement
::= GOTO linenum

HEX$ function
::= HEX$(aexpr)

HOME statement
::=HOME

IF. .. THEN statement
::= IF lexprTHEN linenumlstatementlist

[:ELSE linenumlstatementlist]

IF. .. GOTO statement
::=IF lexpr GOTO linenumlstatementlist

[:ELSE linenumlstatementlist]

IMAGE statement
::=IMAGE spec[{, spec}]

INSTR function
::= INSTR(sexpr, sexpr [,aexpr])

INPUT statement
::= INPUT [string,!;] var{,var}

INPUT# statement
::=INPUT# filenum [, recnum] [; var[{,var}]]

INT function
:: = INT(aexpr)

INVERSE statement
::=INVERSE

INVOKE statement
::=INVOKE pathname [{,pathname}]

LEFT$ function
::= LEFT$(sexpr, aexpr)

LEN function
::= LEN(sexpr)

LET statement
::= [LETI varlmodifiable resvar =\expression\

LIST statement
::=LIST [linenum1] [TOI.I- [linenum2]]

LOAD statement

:: = LOAD filename

LOCK statement
::= LOCK pathname

LOG function
::= LOG(aexpr)

MID$ function
::= MID$(sexpr, aexpr1 [, aexpr2])

NEW statement
::=NEW

NEXT statement
:: = NEXT [control variable {.control variable}]

NORMAL statement
::=NORMAL

NOTRACE statement
::= NOTRACE

OFF EOF# statement
::=OFF EOF# filenum

OFF ERR statement
::=OFF ERR

OFF KBD statement
::=OFF KBD

ON EOF# statement
::=ON EOF# filenum statementlist

ON ERR statement
::=ON ERR statementlist

ON ... GOSUB statement
::=ON aexpr GOSUB linenum {[,linenum]}

ON ... GOTO statement
::=ON aexpr GOTO linenum {[,linenum]}

ON KBD statement
::=ON KBD statementlist

OPEN statement
::=OPEN# filenum [AS INPUT! AS OUTPUT! AS EXTENSION],

pathname [, recsize]

OUTPUT# statement
::=OUTPUT# filenum

POL function
::= PDL(aexpr)

PERFORM statement
::=PERFORM pathname [(lexprj@ var[{,lexprl.@var}])]

POP statement
::=POP

PRINT statement
:: = ?I PRINT {LI ;] [expr]} Ll ;]

PRINT# statement
::=?#I PRINT# filenum [, recnum] [; expr [{; expr}] [;]]

PRINT USING statement
::=?!PRINT USING linenumlstringlsvar; [expr[{, expr}]] [;]

PRINT# USING statement
::=?#using! PRINT# filenum [, recnum] USING

linenumlstringlsvar [; expr[{,expr}]] [;]

READ statement
::=READ var[{,var}]

READ# statement
::=READ# filenum [, recnum] [; var[{,var}]]

REC function
::= REC(filenum)

REM statement
::=REM anything

RENAME statement
::=RENAME pathname1, pathname2

RESTORE statement
::=RESTORE

RESUME statement
::=RESUME

RETURN statement
::=RETURN

RIGHT$ function
::= RIGHT$(sexpr, aexpr)

RND function
::= RND(aexpr)

RUN statement
::=RUN [filename[, linenum]]j[linenum]

SAVE statement
:: = SAVE filename

SCALE statement
::=SCALE (varnameJaexpr)

SGN function
::= SGN(aexpr)

SIN function
::= SIN(aexpr)

SPC specification
::= SPC(aexpr)

SQR function
::= SQR(aexpr)

STEP clause
::=STEP aexpr

STOP statement
::=STOP

STR$ function
::= STR$(aexpr)

SUB$ statement
::= SUB$(svar, aexpr [,aexpr]) = sexpr

SWAP statement
::=SWAP var1, var2

TAB specification
::= TAB(aexpr)

TAN function
::= TAN(aexpr)

TEN function
::= TEN(sexpr)

TEXT statement
::=TEXT

TRACE statement
::=TRACE

TYP function
::= TYP(filenum)

UNLOCK statements
::=UNLOCK pathname

VAL functions
::= VAL(sexpr)

WINDOW statement
::=WINDOW aexpr1, aexpr2 TO aexpr3, aexpr4

WRITE# statement
::=WRITE# filenum [, recnum] [; expr[{, expr}]]

274 Overview of the Graphics Display
274 Graphics Modes
275 Display Buffers
275 Memory Usage
277 Overview of the Graphics Routines
277 Preparations
277 Colors
278 Control of Color
279 Dots and Lines
279 Viewports and Areas
280 Text on a Graphics Display
280 Copying an Image
280 Saving a Display
281 Reclaiming Graphics Memory
281 Details of the Graphics Routines
284 Preparing for Graphics
284 Initializing the Display: INITGRAFIX
285 Changing Graphics Mode: GRAFIXMODE
287 Displaying Your Graphics: GRAFIXON
288 Viewports and Colors
289 Setting the Viewport: VIEWPORT
290 Setting the Pen Color: PENCOLOR
291 Setting the Fill Color: FILLCOLOR
291 Fancier Color Operations: SETCTAB
294 Fancier Black and White: XFROPTION

298 Moves
298 Moving the Cursor
299 Plotting Points
300 Drawing Lines
301 Painting a Rectangle: FILLPORT
301 Screen Information Functions
302 Reading the Screen Color: XYCOLOR
302 Reading the Cursor Position: XLOC and YLOC
303 Displaying Text and Other Images
303 Putting Text into Graphics
305 Changing Text Fonts: NEWFONT
307 Returning to the Normal Font: SYSFONT
307 Drawing Predefined Shapes: DRAWIMAGE
308 Preserving Your Graphics
309 Saving a Picture: GSAVE
309 Retrieving a Saved Picture: GLOAD
309 After Graphics
310 Releasing Graphics Memory: RELEASE

Closing the Graphics Driver
Graphics in Display Mode 1
Creating and Storing a Bit Array

A Source Block for DRAWIMAGE
A Source Block for NEWFONT
The System Font

Direct Control of the Screen

I
Using the Graphics lnvokable Module

The invokable module BGRAF.INV is a library of assembly language
routines that provide a convenient BASIC interface to the system's
graphics driver, .GRAFIX . Complete details on the .GRAFIX driver are
given in the Standard Device Drivers manual.

If you want to do graphics, you must make sure that
SOS.DRIVER includes the .GRAFIX driver. If your
Apple Ill was not supplied that way, you must use the
System Configuration Program to incorporate the
.GRAFIX driver into your operating system. See the
Standard Device Drivers manual for information about
configuring the .GRAFIX driver into your system.

To start using the .GRAFIX driver, you should first open the file
containing that driver. You or your program can do this with an
OPEN# statement that uses the driver's local filename. For example:

100 OPEN#1, ".GRAFIX"

This statement opens the driver .GRAFIX and assigns it the file
reference number 1 (you can assign any integer from 1 through 10
that is not already assigned to another file). Remember this file
reference number; you will use it when you print text on the graphics
screen with PRINT# statements.

Then, when you are ready to use the facilities of the BGRAF.INV
module, you or your program must issue an INVOKE statement
containing the module's local filename. For example, your program
might contain this line:

110 INVOKE "BGRAF.INV"

When this statement is executed, the routines in the BGRAF.INV
module are read into the Apple from disk, and are then available to
the program. You can issue the BASIC statements OPEN#1,
".GRAPHICS" and INVOKE "BGRAF.INV" in immediate execution or
at any point in a program. In immediate execution, the quotes
surrounding a pathname are optional, but they are required in
deferred execution program lines.

If you specify an argument value greater than the maximum correct
value for any particular argument, BGRAF.INV substitutes the
maximum correct value, instead. Similarly, if you specify an argument
value less than the minimum correct value for that argument,
BGRAF.INV substitutes the minimum correct value. Invoked functions
are executed with BASIC's EXFN%. statement. For example,

220 C% = EXFN%.XYCOLOR

uses BGRAF.INV's function XYCOLOR.

All of BGRAF.INV's functions are designed to return
integer values, so the integer form of BASIC's
external function statement { EXFN%.) should always
be used.

Before proceeding to descriptions of the actual routines in the
BGRAF.INV module, we will first present an overview of the general
concepts and operations involved. More details about many of these
points can be found in the Standard Device Drivers manual.

Overview of the Graphics Display
An Apple Ill graphics display can be thought of as a rectangular array
of colored dots. An x,y coordinate system is superimposed on this
array to specify the horizontal and vertical position of each dot. The
origin (x=O,y=O) is at the lower left-hand corner of the display, with x
coordinates increasing to the right and y-coordinates increasing
toward the top of the display. This is strictly an integer coordinate
system.

Another feature of the display is an invisible cursor that is used as a
position reference in certain operations. Many operations move the
cursor, sometimes without affecting the display.

Graphics Modes

There are four different "modes" for displaying Apple Ill graphics.
Each mode is characterized by the number of dots that make up the
display and by the colors that are available:

• Mode 0 :This is a black and white mode in which the full
screen display is 280 dots wide by 192 dots high. That is, x
coordinates are in the range from 0 through 279 and
y-coordinates are in the range from 0 through 191.

• Mode 1 : In this mode, sixteen colors are available; but there
are special limitations described in the section GRAPHICS IN
DISPLAY MODE 1, later in this document. Like mode 0, the full
screen display is 280 dots wide by 192 dots high. That is, x
coordinates are in the range from 0 through 279 andY
coordinates are in the range from 0 through 191.

• Mode 2 :This is a black and white mode that offers twice the
horizontal resolution of mode 0: the full-screen display is 560
dots wide by 192 dots high. X-coordinates are in the range
from 0 through 559 and y-coordinates are in the range from 0
through 191.

• Mode 3 : In this mode, sixteen colors are available at every dot,
with no limitations. The full-screen display is 140 dots wide by
192 dots high. That is, x-coordinates are in the range from 0
through 139 andy-coordinates are in the range from 0 through
191.

Note that the full-screen display is 192 dots high in any mode; only
the horizontal resolution and color selection vary from mode to
mode.

Display Buffers

Most of the graphics routines do not directly affect what appears on
the screen. Instead, they affect the current "display buffer". A display
buffer is an area in the Apple's memory containing a coded
representation of the colors selected for all the dots that make up a
display. The graphics routines affect the information in the current
display buffer, but that information is not actually shown on the
screen until you or your program specifically order this to happen.

Depending on the graphics mode and on the memory size of your
Apple Ill, more than one display buffer may be available
simultaneously. This means that your program can show the contents
of one display buffer on the screen, and continue to show that image
while creating another image in a second display buffer. When the
new image is ready, your program can tell the screen to start showing
the second buffer's information.

Memory Usage

For each of the four graphics modes, you can select either of two
display buffers: buffer 1 and buffer 2. However, this does not mean
that there are eight separate, independently available display buffers.
For graphics mode 0, each display buffer occupies 8K of memory. For
modes 1, 2, and 3, each display buffer occupies 16K of memory. The
display buffers are mapped into the Apple's program memory space
as follows:

Area of Memory
Used for Graphics

Mode 1 Mode 2 Mode 3
Buffer 2 Buffer 2 Buffer 2

Bytes
Used

32K

OK

In a 128K Apple Ill, the entire 32K display buffer space shown is
available for graphics. For any given graphics mode, the two display
buffers occupy separate areas of memory, so that you can switch
back and forth between their independent images. Also, both of the
mode 0 display buffers occupy separate areas of memory from
display buffer 2 of any other mode. This means you can switch
between independent images in mode O's buffer 2, for example, and
mode 3's buffer 2.

Note that buffer 1 of modes 1, 2, and 3 all occupy the
same area of memory shared by the two buffers of
mode 0. This means, for example, that you cannot
switch between independent images in buffer 1 of
mode 1 and buffer 1 of mode 2. Also, buffer 2 of
modes 1, 2, and 3 all occupy the same area of
memory. Thus erasing mode 2's buffer 2, for example,
will also effect buffer 2 for modes 1 and 3.

The graphics module automatically reserves enough space in
memory for your graphics buffers and takes care of moving any
BASIC program out of the graphics memory area. If you later wish to
reclaim all or part of the graphics memory space for other program
use, BGRAF.INV provides a routine that will do this for you. The
BASIC statements LOAD, RUN, and NEW also release all graphics
memory for program use.

Overview of the Graphics Routines
This section discusses in general terms what you can do with the
routines available after invoking the BGRAF.INV graphics module.

Preparations

When you first open the .GRAFIX driver, several initial default
conditions are set which let you immediately begin doing graphics in
the primary display buffer for mode 0. A routine is provided that lets
you select a different mode and/or a different buffer, if you wish.
Another routine tells the Apple to start showing the currently selected
graphics display buffer on the screen.

BGRAF.INV automatically reserves enough memory for any display
buffer that you use, and moves your BASIC program out of that area
of memory.

Colors

The Apple Ill can provide sixteen colors, identified by the following
numbers and names:

Color Color Color Color
Number Name Number Name

0 Black 8 Brown
1 Magenta 9 Orange
2 Dark Blue 10 Grey 2
3 Purple 11 Pink
4 Dark Green 12 Green
5 Grey 1 13 Yellow
6 Medium Blue 14 Aqua
7 Light Blue 15 White

In the color graphics display modes (modes 1 and 3), these sixteen
colors are sent to the Apple Ill's COLOR VIDEO output and
simultaneously produce a 16-level grey scale at the B/WVIDEO
output. In the black and white graphics display modes (modes 0 and
2), all colors other than black are converted to white, at either output.

Control of Color

You can select one color as the "pen color" used for plotting lines
and dots, and another color as the "fill color" used for backgrounds
and erasing. The BGRAF.INV module provides procedures for
selecting these colors.

In the simplest way of using graphics (discussed below), plotting over
any display dot changes its color to the current pen color. Similarly,
when a filling operation erases any area of the display, this changes
all the dots in the area to the fill color.

A great deal can be done with just these simple techniques. More
powerful techniques make use of two controllable processes that can
modify the way plotting and filling operations affect the display:

• A "color table" can specify the display color that results from
applying any source color (pen color or fill color) over any
previously existing display color. By default, the color table
specifies that the result color is always the same as the
source color, but you can change this. This allows you, for
example, to draw a green line that appears to go "under" a
set of orange lines, or to change a red background to blue
without changing the yellow foreground.

• A "transfer option" can further determine how the color
resulting from the color table is applied to the actual dot on
the display. The effect on the display depends on the color
from the color table, and may also depend on the previously
existing color of the dot. By default, the transfer option
specifies that the display dot always takes on the color
resulting from the color table, but you can change this.

Note that, by default, neither the color table nor the transfer option
changes the chosen pen color or fill color. In a particular application,
only one of these methods of altering the color is normally used.
Color graphics modes often use the color table, while black and white
modes may use the transfer option more conveniently. However,
exotic combinations of both methods may prove useful in certain
cases.

The distinction between the two methods is that while the color table
works with specific combinations of colors, the transfer option works
by performing logical operations on the bit patterns that represent
colors internally.

Dots and Lines

The BGRAF.INV module provides a set of procedures for plotting dots
and lines (DOTAT, DOTREL, LINETO and LINEREL), or for moving the
cursor without plotting (MOVETO and MOVEREL). You plot a dot, or
move the cursor to an existing dot, by giving that dot's x,y
coordinates. Alternately, you can give x andy displacements instead
of absolute coordinates; the displacements are taken relative to the
current cursor position.

A line can be plotted (with LINETO) by giving one pair of x,y
coordinates; the result is a line from the current cursor position to
the specified coordinates. You can also (with LINEREL) give the line's
endpoint in terms of x and y displacements from the current cursor
position.

View ports and Areas

One of the BGRAF.INV procedures (VIEWPORT) allows you to define
the boundaries of the current "viewport". This is the area of the
display that can be affected by plotting and filling operations. By
default, the viewport is the whole display, but you can change the
viewport to any smaller rectangular portion of the display. If the
program tries to plot or erase outside the viewport there is no effect.
If a line is plotted and any portion of it is outside the viewport, only
the part that is in the viewport actually affects the display.

The filling operation (FILLPORT), used to paint larger areas or to
erase images from the display, fills the current viewport with the fill
color. Any rectangular area can be quickly colored by specifying an
appropriate viewport and then filling it with the chosen fill color.

Text on a Graphics Display

After using a BASIC file-opening statement such as

OPEN #1, ".GRAFIX"

to assign a file reference number to the .GRAFIX driver (any integer
from 1 through 10 may be used), your program can use the same file
reference number in PRINT# statements such as

PRINT #1; "This is my aunt Merganser."

to put text characters into a graphics-mode display. You can use the
same system character font used for the normal text display, or you
can create and display a new font. BGRAF.INV does not help you to
create a new character font (and this can be a difficult task) but it
does let you easily display such a font. For more information on fonts,
see Creating and Storing a Bit Array.

Copying an Image

A program can use internal data (typically stored as an integer array)
to represent a figure, letter, or other image. A specialized procedure is
provided that uses the pattern of bits in the array for plotting a
pattern of dots on the display. This is a high-speed procedure and is
useful for doing animation. BGRAF.INV does not help you create the
stored bit pattern that defines the image. For more information on
fonts, see the section Creating and Storing a Bit Array.

Saving a Display

Once you or your program have created a graphics display, you can
use a BGRAF.INV procedure to save the display onto diskette. Later,
another procedure can read the saved information back. into the
Apple Ill to re-display the saved image.

Reclaiming Gaphics Memory

If you want to release all or part of the graphics display memory while
a program is running, a BGRAF.INV procedure named RELEASE,
described later, will help you do this.

Details of the Graphics Routines
Before you can begin using graphics with the Apple Ill, your
operating system must be configured to include the .GRAFIX driver. If
your system was not supplied with that configuration, you can use
the System Configuration Program to incorporate the .GRAFIX driver
into your operating system. See the Standard Device Drivers manual
for more information.

To open the .GRAFIX driver, your program can use a BASIC statement
such as

100 OPEN#1, ".GRAFIX"

or you can use the equivalent immediate-execution statement

)OPEN#1, ".GRAFIX"

These statements assign the file reference number 1 to .GRAFIX, but
you could assign any integer from 1 through 10 that is not already
assigned to a file. Note that the quotes around a path name are
optional in immediate-execution statements, but they are required for
deferred-execution program lines.

To begin using the routines in the invokable graphics module, your
program can issue a BASIC statement such as

120 INVOKE "BGRAF.INV"

or you can issue the immediate-execution statement

)INVOKE "BGRAF.INV"

Thereafter, if the file BGRAF.INV was successfully loaded from disk,
the graphics routines are all available to you and your program. These

routines consist of the following procedures and functions:

• INITGRAFIX to reset four of the default conditions for
graphics operations.

• GRAFIXMODE to set the graphics mode and select a display
buffer; GRAFIXON to show the current buffer on the screen.

• PENCOLOR and FILLCOLOR to select the colors for plotting
and erasing; SETCTAB and XFROPTION to change the color
table and transfer option.

• VIEWPORT to set the boundaries of the viewport.

• MOVETO and MOVEREL for moving the cursor; DOTAT,
DOTREL, LINETO, and LINEREL for plotting; FILLPORT for
erasing the viewport.

• XYCOLOR, XLOC, and YLOC functions to obtain information
about the current display.

• NEWFONTand SYSFONT for changing the characters used
for text in graphics; DRAWIMAGE for putting a predefined
image on the screen.

• GSAVE and GLOAD for saving and retrieving a graphics
display.

• RELEASE for making graphics memory space again available
for storing and running BASIC programs.

Note that another INVOKE statement first removes any module
previously invoked, so that those routines are no longer available.

Invoked procedures are available via the PERFORM statement, and
invoked functions are available through the EXFN. statement. You
can use a graphics procedure with a BASIC statement such as

120 PERFORM GRAFIXMODE (%MODE, %BUFFER)
or

)PERFORM GRAFIXMODE (%MODE, %BUFFER)

Many of the graphics procedures require one or more arguments,
which appear in parentheses following the procedure name. Numeric
arguments must be passed to these procedures as integers. BASIC
will pass an argument as an integer value only if the first character of
the argument is a percent sign (%).These are valid numerical
arguments:

%Q %MODE %LEFT% %32
%HEIGHT%+2.6 %78*3.14 %X/13

but these are not valid:

Q MOD LEFT% 32
HEIGHT%+2.6 78*3.14 X/13

If the value of an argument exceeds the limits for integers (-32768
through 32767), an error message is given. Within the limits for
integers, if an argument value exceeds the maximum correct value
for that particular argument, the maximum correct value is used for
that argument, instead. Similarly, if an argument value is less than the
minimum correct value for that argument, the minimum correct value
is used, instead.

To use a graphics function, a BASIC statement such as this will do:

150 HUE% = EXFN%.XYCOLOR

or

)HUE% = EXFN%.XYCOLOR

The graphics functions always return integer values, so you must use
the integer form (EXFN%.) of BASIC's external function statement.

The remaining sections are concerned with the actual detailed
operation of the procedures and functions of BGRAF.INV.

Preparing for Graphics

The following procedures are all part of getting ready to do graphics.
They are normally used before you see any display on the screen.

Opening the .GRAFIX driver normally sets the following initial
defaults for graphics:

Graphics Normal Default Set
Parameter by Opening .GRAFIX

Graphics mode 280x192, black & white (mode 0)
Display buffer Primary buffer (buffer 1)
Viewport Full screen (x=O to x=279,

y=O to y=191)
Cursor position Lower left corner (x=O, y=O)
Pen color White (color=15)
Fill color Black (color=O)
Color table Normal (no effect)
Transfer option Normal (option=O, no effect)
Graphics text font Current system font

The "normal" color table and transfer mode specify that the pen
color and fill color are placed directly on the screen without alteration
during plotting or erasing operations.

If you usually employ a different set of conditions for your graphics,
you can change these default conditions using the System
Configuration Program, as described in the Standard Device Drivers
manual.

Initializing the Display: INITGRAFIX

The INITGRAFIX procedure resets four parameters for the current
graphics mode. It has no arguments and can be called at any time.
The statement

)PERFORM INITGRAFIX

sets only these four conditions:

Graphics
Parameter

Viewport

Cursor position
Color table
Transfer option

Condition Set
by INITGRAFIX

Full Screen

Lower left corner
Normal
Normal

(for currently set
graphics mode)

(x=O, y=O)
(no effect)

(option=O, no effect)

No other graphics parameters are changed by INITGRAFIX . You can
use the INITGRAFIX procedure whenever you wish to reset the
viewport to the full dimensions of the screen, to move the cursor to
the origin, and to reset the color table and transfer option to normal.
This can be especially helpful immediately after changing to a
different mode or display buffer, or after changing a large number of
color table conditions.

Changing Graphics Mode: GRAFIXMODE

To change the graphics display mode or the display buffer or both for
future graphics, use the GRAFIXMODE procedure. GRAFIXMODE has
two arguments: the first specifies a graphics display mode and the
second specifies a display buffer. You must supply both arguments,
even if you are changing only one of them. For example, you could
use these statements to change to mode 0, secondary display buffer:

)MODE = 0 : BUFFER = 2
)PERFORM GRAFIXMODE (%MODE, %BUFFER)

After your program performs the GRAFIXMODE procedure,
subsequent graphics operations will take place in the selected
graphics mode and on the selected display buffer. The effects of this
will be visible only after you perform the GRAFIXON procedure,
discussed later.

The value of GRAFIXMODE's first argument is an integer from 0
through 3 which selects the display mode for future graphics
operations:

Argument
Value

Display Mode
Selected

0
1
2
3

280 by 192, black & white
280 by 192, 16 colors (restricted)
560 by 192, black & white
140 by 192, 16 colors (no restrictions)

GRAFIXMODE's second argument may have an integer value of
either 1 or 2, selecting the display buffer for future graphics
operations:

Argument
Value

Display Buffer
Selected

1
2

Primary buffer
Secondary buffer

See the earlier section OVERVIEW OF THE GRAPHICS DISPLAY for
more information about graphics modes and display buffers.

The GRAFIXMODE procedure immediately changes
the way your Apple Ill handles graphics operations,
but it does not change the screen display. To make the
display on the screen match the mode and buffer
selected by a GRAFIXMODE procedure, use the
GRAFIXON procedure (discussed in a later section).

The most common use of GRAFIXMODE is to select a graphics
display mode, and then to switch back and forth between the two
display buffers for that mode. This lets you create an image on a
selected buffer before you show that image on the screen. When the
image is complete, GRAFIXON will flash it on the screen. And while
that image remains on the screen, you can "secretly" select the other
buffer for that mode (using GRAFIXMODE) and create a second

image on that buffer. You do not have to show your second image on
the screen (using GRAFIXON) until the image is complete.

You can also use GRAFIXMODE (followed by GRAFIXON) to switch
rapidly back and forth between two images, to give special effects.
Again, the two images must be in display buffers that occupy
different areas of graphics memory.

If GRAFIXMODE selects a new mode whose buffer
uses the same memory space currently being used for
the screen display, subsequent graphics operations
may affect the screen strangely. This is because your
graphics operations are using the new mode to
change the contents of the buffer, but the screen is
still interpreting that buffer information according to
the mode previously set. Your graphics operations
since GRAFIXMODE will be correctly displayed as
soon as you perform a GRAFIXON procedure.

Also, an image created in one mode (even a simple
blank screen) will rarely make sense when the same
buffer information is interpreted in a different mode.
For this reason, you will often want to use FILLPORT
(see discussion later) to erase the display after you
change modes.

For example, to begin doing graphics so that they immediately
appear on a cleared screen in mode 3 (primary buffer), you might use
these statements:

100 MODE= 3: BUFFER= 1
110 PERFORM GRAFIXMODE (%MODE, %BUFFER)
120 PERFORM FILLPORT
130 PERFORM GRAFIXON

Displaying Your Graphics: GRAFIXON

The GRAFIXON procedure causes the currently selected display
buffer to be shown on the screen in the currently selected graphics

mode. It has no arguments. When the current graphics mode and/or
display buffer are changed with a GRAFIXMODE procedure, all
subsequent graphics operations refer to that mode and buffer.
However, the rnode and buffer displayed on the screen are not
changed by a GRAFIXMODE procedure. To change the mode and
buffer displayed on the screen to those specified in the most recently
performed GRAFIXMODE procedure, use the statement:

)PERFORM GRAFIXON

The GRAFIXON procedure simply switches the screen display to the
currently active mode and display buffer. Note that this is the only
way to cause the default or newly selected buffer to appear on the
screen. After INVOKE "BGRAF.INV", the screen continues its normal
text display. Your program must perform GRAFIXON at some point in
order to put any graphics on the screen.

Viewports and Color
The procedures in this section control the "window" through which
graphics appear on the screen, and the colors used for drawing and
erasing operations. In the most general case, a new dot being plotted
must pass through three different "filters" in the following order
before the dot is actually placed on the screen:

1. The viewport-- a dot that would be outside the current
viewport is ignored.

2. The color table -- the color selected for the dot may be
altered by the color table.

3. The transfer option -- after color table change, the dot's
resulting color may be further changed by the transfer
option.

Under the initial default conditions, all three of these "filters" may be
ignored; the viewport occupies the entire screen, and colors are not
changed by the color table or the transfer option. Your graphics
simply appear on the screen in the place and color you specify.

Setting the Viewport: VIEWPORT

The VIEWPORT procedure sets the boundaries of the graphics
viewport. The viewport is a rectangular area of the display that can be
affected by subsequent plotting and erasing operations. The
VIEWPORT procedure has four arguments, whose integer values give
the left, right, bottom, and top coordinates for the viewport you wish
to set. For example, to set a viewport that extends horizontally from
x=20 to x=100, and vertically from y=40 to y=130, you could use
these statements:

)LEFT= 20: RIGHT= 100: BOTTOM= 40: TOP= 130
)PERFORM VIEWPORT (%LEFT, %RIGHT, %BOTTOM, %TOP)

Once you have set a viewport, dots plotted outside the viewport do
not appear on the screen. When you plot lines, letters, and other
shapes that would extend beyond the viewport, only the portions
within the viewport actually appear on the screen.

To erase the entire viewport to the selected fill color, use the
FILLPORT procedure discussed later. An easy way to create a
rectangular frame on the screen is to set a viewport, fill it with a
frame color, then change to a slightly smaller viewport and fill it with
another background color.

The vertical limits of the screen are identical in every mode,
extending from y=O at the bottom to y=191 at the top. The horizontal
screen limits vary from mode to mode.

@ When you change to a new graphics mode, the
viewport is automatically adjusted to the full screen
dimensions of the new mode.

To reset the viewport to the full dimensions of the screen, you can
perform either the INITGRAFIX or VIEWPORT procedures.

Setting the Pen Color: PENCOLOR

The PENCOLOR procedure sets the "pen color", that is the color to
be used by subsequent plotting, drawing, and foreground operations.
It has one argument, whose integer value specifies the chosen pen
color from the following list of colors:

Argument Color Argument Color
Value Selected Value Selected

0 Black 8 Brown
1 Magenta 9 Orange
2 Dark Blue 10 Grey 2
3 Purple 11 Pink
4 Dark Green 12 Green
5 Grey 1 13 Yellow
6 Medium Blue 14 Aqua
7 Light Blue 15 White

In black and white graphics modes (modes 0 and 2), all non-black
colors appear as white both at the COLOR VIDEO output and at the
B/W VIDEO output. In the color modes (modes 1 and 3), the sixteen
colors are sent to the COLOR VIDEO output and are simultaneously
sent to the B/W VIDEO output as sixteen gradually whiter levels of
grey.

For example, to change the pen color to yellow, you could use this
statement:

)PERFORM PENCOLOR (%13)

After you perform PENCOLOR , the selected pen color is used for
plotting dots and lines, as the foreground color for text characters on
the graphics screen, and as the foreground color for blocks put on
the screen by the DRAWl MAGE procedure.

Before a new dot in the selected pen color is placed on the screen, its
color may be modified by the color table and/or by the transfer
option.

Setting the Fill Color: FILLCOLOR

The FILLCOLOR procedure sets the "fill color", that is the color to be
used by subsequent background and area-filling operations. It has
one argument, whose integer value specifies the chosen fill color
(see the previous section for a table of argument values and their
corresponding colors).

For example, to change the fill color to dark green, you could use the
statements:

)COLOR%= 4
)PERFORM FILLCOLOR (%COLOR%)

After you perform FILLCOLOR , the selected fill color is used for
erasing the viewport with the FILLPORT procedure, as the
background color for text characters on the graphics screen, and as
the background color for blocks put on the screen by the
DRAWIMAGE procedure.

Before a new dot in the selected fill color is placed on the screen, its
color may be modified by the color table and/or by the transfer
option.

Fancier Color Operations: SETCTAB

The SETCTAB procedure sets one of the 256 possible color-mapping
conditions in the "color table". The color table specifies the color
that results from plotting a new dot of a given "source color" (either
pen color or fill color) over a previously existing display dot of a given
"screen color".

SETCTAB has three arguments. The integer value of the first
argument specifies a source color, that may have been selected
either by FILLCOLOR or by PENCOLOR . The integer value of the
second argument specifies a screen color, that is the existing color of
a dot in the current display buffer (whether that buffer is now on the
screen or not). The integer value of the third argument specifies the
color that will result if you plot a dot of the given source color at a
point whose existing color is the given screen color.

For example, to cause subsequent green lines to show up purple
where they are drawn over a brown background, you could use these
statements:

)SOURCECOLOR = 12 : SCREENCOLOR = 8 : RESULTCOLOR = 3 ,
)PERFORM SETCTAB (%SOURCECOLOR, %SCREENCOLOR, l
%RESULTCOLOR)

Similary, you could use these statements to make a subsequent dark
blue. line appear to go "under" any existing orange lines it crosses:

)SOURCECOLOR = 2 : SCREENCOLOR = 9 : RESULTCOLOR = 9
)PERFORM SETCTAB (%SOURCECOLOR, %SCREENCOLOR,
%RESULTCOLOR)

If you have a yellowdesign on a light blue background, and you wish
to change the background to magenta without changing the yellow
design, you could use these statements:

)SOURCECOLOR = 1 : SCREENCOLOR = 13: RESULTCOLOR = 13
)PERFORM SETCTAB (%SOURCECOLOR, %SCREENCOLOR,
%RESULTCOLOR)
)PERFORM FILLCOLOR (%SOURCECOLOR)
)PERFORM FILLPORT

The first two statements in this example set the color table so that
when a magenta dot is plotted over an existing yellow dot, the result
is a yellow dot on the screen. Thus yellow screen dots are not
changed when magenta is plotted over them. The next three
statements plot magenta dots over the entire viewport. This changes
the screen to magenta except where yellow dots previously existed
on the screen.

The initial default conditions set the color table to "normal", so that
any source color results in the same color, unmodified, being passed
on to the display (after being processed by the transfer option), no
matter what previous colors exist in the display. Here is a diagram of
the "normal" color table:

Source Screen Color

Color 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Black 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Magenta 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D. Blue 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Purple 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
D. Green 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Grey 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
M. Blue 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
L. Blue 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Brown 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Orange 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Grey 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Pink 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Green 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
Yellow 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
Aqua 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
White 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

In this diagram, the intersection of a source color row and a
screen color column contains the number of the result color that
will go on the screen if you plot that source color over a dot of
that screen color. When you perform the SETCTAB procedure,
you are changing just one of the 256 intersection numbers in this
color table.

To return the color table to "normal" after you have set any
special conditions into it, you can use the INITGRAFIX procedure.
That procedure also sets the viewport to full screen, and moves
the cursor to the lower left corner.

Note that plotting operations pass the color for a
new dot first through the color table and then
through the transfer option. It is the result of the
color table that is used as the source color for the
transfer option.

Fancier Black and White: XFROPTION

The XFROPTION procedure sets the "transfer option". The transfer
option is similar to the color table: it determines the color which
results from plotting a new dot of any "source color" (from the color
table) over a previously existing display dot of any "screen color".
While SETCTAB sets a single color which results from one particular
pair of source and screen colors, XFROPTION sets a transfer option
which operates on all pairs of source and screen colors.

XFROPTION has one argument, whose integer value specifies the
transfer option to be used for subsequent plotting operations:

Argument Transfer Option Result Color, Given a Source
Value Selected Color and a Screen Color

0 Replace Sourcecolor
1 Overlay Sourcecolor OR Screencolor
2 Invert Sourcecolor XOR Screencolor
3 Erase (NOT Sourcecolor) AND Screencolor
4 Inverse Replace NOT Sourcecolor
5 Inverse Overlay (NOT Sourcecolor) OR Screencolor
6 Inverse Invert (NOT Sourcecolor) XOR Screencolor
7 Inverse Erase Sourcecolor AND Screencolor

For example, to begin using the "Invert" transfer option for
subsequent plotting operations, you could use these statements:

)INVERT%= 2
)PERFORM XFROPTION (%INVERT%)

Because the effect of the transfer option is rather complex when
applied to 16-color displays, the transfer option is most often used in
modes which are restricted to black and white displays. The names of
the options really make sense only in black and white, where there
are just two colors in use: 0 (black) and 15 (white).

• Replace (transfer option 0). This is the default option. It
completely ignores the colors on the screen, and simply
copies any source color directly onto the display without
modification.

• Overlay (transfer option 1). Useful for putting white text
characters or image blocks onto a black background crossed
by a few, thin white lines. Does not erase any background
around characters or image.

• Invert (transfer option 2). Useful for plotting white lines, text,
or image blocks onto a background consisting of large areas
of both black and white. The lines or shapes will show up as
white where they are on a black background area, and as
black where the background is white. If you plot the same
figure twice in the same place with this option (even in color
modes), the second plot erases the figure, leaving the
background unchanged.

• Erase (transfer option 3). Black and white plotting has no
effect on a black and white background except that a white
line, text character, or image crossing a white background
area erases a black image of that line or shape.

• Inverse Replace, Inverse Overlay, and lnvers.e Reverse
(transfer options 4, 5, and 6). These options first conver ~ a
white source to black, or a black source to white, and tt.en
behave just like Copy, Overlay, and Reverse.

• Inverse Erase (transfer option 7). Black and white plotting has
no effect on a black and white background except that a
black line, text character, or image appears where it crosses a
white background area.

In color modes, it is usually easier to modify colors using SETCTAB
and the color table, rather than using a transfer option. If you wish to
use the transfer option with colors other than black and white, you
may need to read the more technical information in the remainder of
this section. Alternatively, you can use the "Color Transfer Tables" in
the Graphics Quick Reference section at the back of the Standard
Device Drivers manual. In that manual, transfer options 0, 1, 2, and 3
are called "Store", "OR", "XOR", and "BIC", respectively.

The transfer option compares each of the four bits in the source
color's code to the corresponding bit in the screen color's code. The
results of these four comparisons are the four bits which specify the
result color. Four different logical operations, in different
combinations as specified for each transfer option, characterize the
results of these bit-by-bit comparisons:

• The OR operation yields a 1 if either of the two bits being
compared is a 1 or if both are 1 ; it yields a 0 if both bits are 0.

• The XOR operation yields a 1 if either bit is a 1 ; but it yields a
0 if both bits are 1 or if both bits are 0.

• The AND operation yields a 1 only if both bits are 1; it yields a
0 if either bit is 0 or if both bits are 0.

• The NOT operation affects only one color code; it converts
any 0 bit in that code to a 1, and any 1 bit to a 0.

For example, if you set the transfer option "Erase" (option 3), the
operation is defined as

Resultcolor = (NOT Sourcecolor) AND Screencolor

Suppose you now plot a dot of source color Light Blue (binary code
0110) over an existing dot of screen color Yellow (binary code 1101).
The "Erase" transfer operation in this case is

Resultcolor = (NOT 011 0) AND 11 01

NOT changes each 0 to a 1 and each 1 to a 0, so (NOT 011 0) becomes
1001. The remaining operation is

Resultcolor = 1001 AND 1101

AND yields a 1 only if corresponding bits are both 1. The first bit of
each code is 1, so the first result bit is also 1. The two codes' second
bits are 0 and 1, respectively, so the second result bit is 0. The third
bits are both 0, giving 0 as the third result bit. Finally, both codes
have 1 as the last bit, so the last result bit is 1. Thus the four-bit code
for the result color is 1001, which specifies the color Orange for the
dot on the display.

Each transfer option specifies a bit-wise logical operation to be
performed on the four-bit binary equivalent of the source color
number and the four-bit binary equivalent of the existing screen color
number at the dot being plotted. The result of this operation is a four
bit number whose decimal equivlent specifies the color of the dot
which is actually placed on the display.

The source color number for the dot being plotted may have been
selected either by FILLCOLOR or by PENCOLOR, and may have been
modified by a condition set in the color table by SETCTAB . The
screen color number gives the existing color at that dot in the current
display buffer (whether that buffer is now on the screen or not). For
your convenience, here are the four-bit binary codes specifying the
various colors:

Color 4-Bit Color
Number Code Name

0 0000 Black
1 0001 Magenta
2 0010 Dark Blue
3 0011 Purple
4 0100 Dark Green
5 0101 Grey 1
6 0110 Medium Blue
7 0111 Light Blue

Color 4-Bit Color
Number Code Name

8 1000 Brown
9 1001 Orange

10 1010 Grey 2
11 1011 Pink
12 1100 Green
13 1101 Yellow
14 1110 Aqua
15 1111 White

Note that plotting operations pass the color for a new
dot first through the color table and then through the
transfer option. It is the result of the color table that is
used as the source color for the transfer option.

Moves, Dots, Lines, and Areas
The routines discussed in this section are those you will use to do the
actual plotting of your graphics images. Moves, dots, and lines all
leave the cursor at the last point moved to or plotted. Filling an area
does not move the cursor.

Plotting is the same as a move, except that an image (dot or line) is
drawn on the screen at the point of the plot.

The absolute x and y coordinates for a cursor-move, dot, or line may
have any integer value from -32768 through 32767, even if those
coordinates specify a position beyond the boundaries of the viewport
or the boundaries of the screen. However, only those dots or line
portions will be plotted which lie within the currently set viewport.

A relative move cannot create an absolute cursor, dot, or line position
whose coordinates exceed the range from -32768 through 32767. If a
relative move would result in a coordinate which exceeds the
minimum or maximum limit, that coordinate is adjusted to the limit
exceeded.

The color of any dot actually placed in the display may be changed
from the chosen pen color or fill color by the color table and/or by the
transfer option.

Moving the Cursor, Absolute: MOVETO

The MOVETO procedure moves the cursor to a specified absolute
screen location without plotting. MOVETO has two arguments, whose
integer values are the coordinates of the position where the cursor is
to be placed. The first argument specifies the absolute horizontal or
x-coordinate, and the second argument specifies the absolute
vertical or y-coordinate. For example, to move the cursor to the
position x=133,y=25, you could use these statements:

)X = 133 : Y = 25
)PERFORM MOVETO (%X, % Y)

Moving the Cursor, Relative: MOVREL

The MOVEREL procedure moves the cursor to a specified screen
location relative to the current cursor location, without plotting.
MOVEREL has two arguments, whose integer values indicate how far
to move the cursor from its current position. The first argument
specifies the horizontal or x-axis distance to move the cursor, and the
second argument specifies the vertical or y-axis distance. For
example, to move the cursor 35 units to the right and 74 units down
from its current position, you could use these statements:

)DX = 35: DY = -74
)PERFORM MOVEREL (%DX, %DY)

Plotting Points, Absolute: DOTAT

The DOT AT procedure moves the cursor to a specified absolute
screen location and then plots a dot at that location in the current
pen color. DOTAT has two arguments, whose integer values are the
coordinates of the position where the dot is to be placed. The first
argument specifies the absolute horizontal or x-coordinate, and the
second argument specifies the absolute vertical or y-coordinate. For
example, to plot an aqua-colored dot at the position x=47,y=139,
you could use these statements:

)AQUA%= 14
)PERFORM PENCOLOR (%AQUA%)
)X%= 47 :Y% = 139
)PERFORM DOT AT (%X%, % Y%)

or you could use these completely equivalent statements:

)PERFORM PENCOLOR (%14)
)PERFORM DOTAT (%47, %139)

Plotting Points, Relative: DOTREL

The DOTREL procedure moves the cursor to a specified screen
location relative to the current cursor location, and then plots a dot at
that location in the current pen color. DOTREL has two arguments,
whose integer values indicate how far to move the cursor from its
current position, before plotting the dot. The first argument specifies
the horizontal or x-axis distance to move the cursor, and the second
argument specifies the vertical or y-axis distance. For example, to
plot a purple dot 113 units to the left and 14 units up from the current
cursor position, you could use these statements:

)PURPLE%= 3
)PERFORM PENCOLOR (%PURPLE%)
)OX%= -113: DY% = 14
)PERFORM DOTREL (%DX%, %DY%)

Drawing Lines, Absolute: LINETO

The LINETO procedure moves the cursor to a specified absolute
screen location and then draws a line from the old cursor position to
the new cursor position, in the current pen color. LINETO has two
arguments, whose integer values are the coordinates of the point to
which the line will be drawn. The first argument specifies the
absolute horizontal or x-coordinate of the end point, and the second
argument specifies the absolute vertical or y-coordinate. For
example, to plot a pink-colored line from the current cursor position
to the position x=863,y=-144, you could use these statements:

)PINK= 11
)PERFORM PENCOLOR (%PINK)
)X = 863 : Y = -144
)PERFORM LINETO (%X, % Y)

Drawing Lines, Relative: LINEREL

The LINEREL procedure moves the cursor to a specified screen
location relative to the current cursor location, and then draws a line
from the old cursor position to the new cursor position, in the current
pen color. LINEREL has two arguments, whose integer values
indicate how far to move the cursor from its current position, before

drawing a line to the new position. The first argument specifies the
horizontal or x-axis distance to move the cursor, and the second
argument specifies the vertical or y-axis distance. For example, to
draw a medium blue line from the current cursor position to a point 8
units to the right and 58 units up from that position, you could use
these statements:

)COLOR= 6
)PERFORM PENCOLOR (%COLOR)
)OX = 8 : OY = 58
)PERFORM LINEREL (%OX, %0Y)

or these equivalent statements:

)PERFORM PENCOLOR (%6)
)PERFORM LINEREL (%8, %58)

The endpoint for the line is adjusted, if necessary, so
that its coordinates are within the range from -32768
through 32767. This takes place before the line is
drawn to the adjusted endpoint.

Painting a Rectangle: FILLPORT

The FILLPORT procedure takes no parameters. It fills the viewport
with the currently selected fill color. Unless special conditions are set
in the color table or the transfer option, FILLPORTerases everything
in the viewport. For example, to erase the screen to brown, you might
use these statements:

)COLOR= 8
)PERFORM FILLCOLOR (%COLOR)
)PERFORM FILLPORT

Screen Information Functions
The BGRAF.INV module provides three functions for reading the
current location of the cursor and the color of the display dot at that
point. Your BASIC program uses these functions through the EXFN%.
external function statement.

Other information about the current graphics environment can be
obtained, if necessary, by transferring the .GRAFIX driver's "screen
status block" to a suitable program buffer. The BASIC graphics
module BGRAF.INV does not help you do this: see the Standard
Device Drivers manual for more information.

Reading the Screen Color: XYCOLOR

The XYCOLOR function returns an integer value which specifies the
color of the display dot at the current cursor position. For example, to
discover the dot color at location x=23,y= 7 , you could use the
statements

)HORIZ = 23 : VERT = 7
)PERFORM MOVETO (%HORIZ, %VERT)
)COLOR%= EXFN%.XYCOLOR

The first two statements move the cursor to the position x=23,y=7. If
the color of the display dot at that position is Grey 2, the third
statement will assign the value 10 to the integer variable COLOR%.

XYCOLOR will return the color of a dot, even though that dot is not
within the currently set viewport. If the current position of the cursor
is not within the boundaries of the screen, XYCOLOR returns the
value -1.

Reading the Cursor Position: XLOC and YLOC

The XLOC function returns an integer value which is the horizontal or
x-coordinate of the current cursor position. Similary, the YLOC
function returns an integer value which is the vertical or y-coordinate
of the current cursor position. For example, to discover the present
location of the cursor, you could use these statements:

)X% = EXFN%.XLOC : Y% = EXFN%.YLOC

If the cursor is at the position x=34,y= -598 , this example will assign
the value 34 to the integer variable X% and the value -598 to the
integer variable Y%.

XLOC and YLOC will return the position of the cursor, even though
the cursor is not within the currently set viewport, or is beyond the
limits of the screen. There is no error generated if XLOC and YLOC
values are between 32767 and -32768, even if the cursor resulting
cursor position is off the screen.

Displaying Text and Other Images
The procedures in this section allow you to put shapes other than
dots, lines, and rectangles on the screen.

Text can be put into your graphics for labels, legends, or explanations.
You can also change to a different set, or "font", of text characters.
You could design these characters to looks like another alphabet,
such as Greek or Russian, or you could design almost any arbitrary
shape corresponding to different letters, such as a person in different
stages of running.

Finally, you can add a predefined shape to your graphics display, in
any screen position. BGRAF.INV does not help you create a new set
of characters or a predefined shape, but it does make it easy to put
such characters or shapes on the screen.

For help with creating character sets or stored images, see the
section CREATING AND STORING A BIT ARRAY, later in this chapter.

Putting Text Into Graphics

The BASIC statement PRINT# is used to display text on the graphics
screen. Before you can use PRINT#, you must first use the OPEN#
statement to assign a BASIC file reference number to the .GRAFIX
driver. If you did not do this when you invoked BGRAF.INV, use a
statement such as this:

)OPEN#1, ".GRAFIX"

This statement assigns .GRAFIX the file reference number 1, but you
could assign any integer from 1 through 10 as the file reference
number. You will want to use a number not currently assigned to
another file.

Once OPEN# has assigned a file reference number to the .GRAFIX
driver, PRINT# can use the same number to send characters to the
graphics display. Just move the cursor to the screen position where
you want the text to begin, and then start printing with PRINT# . For
example, if you have assigned .GRAFIX the file reference number 1,
you could print Apple Computer starting in the middle of the left
edge of the graphics screen:

)PERFORM MOVETO (%0, %86)
)PRINT#1; "Apple Computer"

The original cursor position determines the top left corner of the first
character's rectangular "cell". Characters can begin at any dot
position; they are not limited to normal text-screen character
positions. You can print text at any possible cursor position, even
beyond the boundaries of the viewport and the screen. However, only
those portions of the text which lie within the currently set viewport
are actually plotted on the display.

After each character is put on the screen, the cursor is advanced one
character-cell width. The cursor's final position depends on your
PRINT# statement: graphics text follows normal text-mode
formatting for line feeds, RETURNs, concatenations, and tab fields.
PRINT# text does not, however, recognize the right edge of the
viewport or screen; a very long line of text just disappears when it
reaches the viewport's right edge.

Text characters in graphics are normally taken from the same system
character font used for text-mode displays. However, the NEWFONT
procedure can change the character font used for graphics to a
different font created and stored by you.

The same set of characters is used in every graphics mode, but the
characters look somewhat different in different modes. You will find
that forty standard characters fit across the width of the screen in
graphics modes 0 and 1. Mode 2 accomodates eighty standard
characters, and mode 3 will display a maximum line of twenty
standard characters.

Note that statements which normally put text on the text display will
continue to do so, even though a graphics display is on the screen at
the time. When you return to text mode (by issuing BASIC's TEXT
statement), the characters you printed on the text display will be
waiting for you. For example, the statements

)PRINT#1; "Meanwhile, back at the ranch ... "
)PRINT "And now, here is chapter 13 of our story."

will put the words "Meanwhile, back at the ranch ... " starting at the
graphics cursor position in the current graphics display buffer. They
will also put the words "And now, here is chapter 13 of our story."
starting at the text cursor in the text-mode display.

While you will probably print most characters in white on a black
background for clarity, you can also print text in colors. The character
itself takes its color from the current pen color. Each character's
small, rectangular background area takes its color from the current
fill color. Before they affect the dots in the display, the color selected
for each character-dot and background-dot may be altered by the
color table and/or the transfer option.

Many character/background color combinations are
not easily readable. See the NTSC Color Compatibility
Table in the Standard Device Drivers manual for more
details about useful colors for text.

Changing Text Fonts: NEWFONT

When you use PRINT# to display text on the graphics screen, the
default set of characters, or "font", is the standard Apple Ill text font.
The NEWFONT procedure lets you switch to another previously
stored font for graphics. NEWFONTrequires three integer arguments.
The first argument is a pointer t6 the first element of a dimensioned
integer array containing the new font. The second argument specifies
the width of the new font's character cell in dots, and the third
argument specifies the new character cell's height in dots.

For example, suppose you have stored a new font in integer array
variable FONT%. The character cell for this font is 12 dots wide by 7
dots high. To start using this font for subsequent PRINT# graphics
text, use these statements:

)WIDTH = 12 : HEIGHT = 7
)PERFORM NEWFONT (@FONT%(0,0), %WIDTH, %HEIGHT)

After these statements, if the .GRAFIX driver has been assigned the
file reference number 1 (by OPEN#1, ".GRAFIX"), a statement such
as

)PRINT#1; "OK"

will put the contents of the new font's 80th and 76th character cells
on the graphics display, starting at the cursor position. That is
because the standard letters 0 and K are the 80th and 76th
characters in the ASCII coding sequence.

The name of the first element of the array variable
containing the new font is preceded by an "at" sign
(@)where it appears as an argument. This tells BASIC
to get a "pointer" to the array variable's first element,
and to pass the pointer to the NEWFONT procedure.
The pointer then gives NEWFONT the address in the
Apple's memory where the new font can be found.

The NEWFONT procedure does not change the
characters printed on the text-mode display; text
mode continues to use the standard font.

The NEWFONT procedure's first argument is usually a pointer to an
array of integers, or perhaps an array of long integers. The
BGRAF.INV module does not provide any aid in creating a new
character font; it just lets you use such a font easily. The section
CREATING AND STORING A BIT ARRAY, later in this chapter, may
help you to make a new font yourself.

Returning to the Normal Font: SYSFONT

The SYSFONT procedure lets you begin using the normal system font
for graphics again, after you have changed to a new font by the use
of NEWFONT . SYSFONT has no parameters. The statement

)PERFORM SYSFONT

causes subsequent PRINT# statements to send the graphics screen
characters from the system font instead of any new font.

The system font is always used for text-mode displays, even when a
new font is being used for graphics. Technical details about the
system font can be found in the section CREATING AND STORING A
BIT ARRAY, later in this chapter.

Drawing Predefined Shapes: DRAW/MAGE

The DRAWIMAGE procedure draws a predefined shape on the
screen. It transfers to the current graphics screen a specified portion
of a block of bits, placing them below and to the right of the current
cursor position. Each 1-bit in the source block portion is put on the
screen using the current pen color; each O-bit use the current fill
color. Both colors may be modified by the color table and the transfer
function before they affect the display.

DRAWIMAGE requires six integer arguments. The first argument is a
pointer to the first element of a dimensioned integer array containing
the source block of bits. The second argument specifies the number
of bytes (not bits) in each row of the source block. The third
argument specifies the number of bits to skip in each source row
before beginning a row transfer. The fourth argument specifies the
number of source rows to skip before beginning the transfer process.
These two arguments determine the top left corner within the source
block of the portion to be transferred. The fifth and sixth arguments
specify the bit width and height of the block portion to be transferred
to the screen.

For example, suppose you have stored your source block in the two
dimensional integer array variable SOURCE% . This source block
consists of twenty rows of bits, each row four bytes long. Now
suppose you want to take a portion of this block eight bits wide by
five rows high, from the lower right corner of the block, and transfer
it to the screen so that the current cursor position determines the top
left corner of this image on the screen. That is, the block portion to
be transferred will consist of the last eight bits of each of the last five
rows in the source block. To accomplish this, DRAWIMAGE must skip
the first fifteen source rows entirely, and then transfer all but the first
twenty-four bits from each of the remaining rows. These statements
should do the job:

)ROWBYTES = 4 : XSKIP = 24 : YSKIP = 15 :
DWIDTH = 8 : DHEIGHT = 5

)PERFORM DRAWIMAGE (@SOURCE%(0,0), %ROWBYTES,
%XSKIP, % YSKIP, %DWIDTH, %DHEIGHT)

The name of the first element of the integer array variable containing
the source block is preceded by an "at" sign (@) where it appears as
an argument. This tells BASIC to get a "pointer" to the array variable's
first element, and to pass the pointer to the DRAWIMAGE procedure.
The pointer then gives DRAWl MAGE the address in the Apple's
memory where the source block's beginning can be found.

The DRAWIMAGE procedure's first argument is usually a pointer to
an array of integers, or perhaps an array of long integers. The
BGRAF.INV module does not provide any aid in creating a source
block; it just lets you use such a stored image easily. The section
CREATING AND STORING A BIT ARRAY, later in this chapter, may
help you to make a source block yourself.

Preserving Your Graphics
The procedures in this section let you save a graphics display, once
you have created it, as a disk file. Later, you can load the contents of
this file back into a graphics display buffer for display or for further
work.

Saving a Picture: GSAVE

If you would like to save the contents of a graphics buffer at any time,
you can use the GSAVE procedure. GSAVE works similarly to the
normal SAVE statement, except that it saves a picture instead of a
program. Only one argument is required: a pathname. For example, if
you execute the statement

)PERFORM GSAVE. "SCREEN.PICTURE"

the contents of the current display buffer are stored in the disk file
SCREEN. PICTURE. The file is essentially a data file, but it has the
type FOTO, not DATA . Along with the actual image information,
GSAVE also saves the current graphics mode for use when retrieving
the file.

Retrieving a Saved Picture: GLOAD

If you would like to transfer the contents of a stored graphics file to
the current graphics buffer, you can use the GLOAD procedure.
GLOAD works similarly to the LOAD statement, except that it loads a
picture instead of a program. Only one argument is required: a
pathname. For example, if you execute the statement

)PERFORM GLOAD. "SCREEN.PICTURE"

the contents of the file SCREEN.PICTURE will be put into the
graphics buffer. The file specified must be of type FOTO. The
currently selected buffer number is not changed by GLOAD, but the
graphics mode is automatically changed to the graphics mode in
effect when the stored image was saved. The new image completely
replaces any previous display in that buffer, disregarding the
viewport, the color table, and the transfer option.

After Graphics

The graphics procedure and BASIC statements discussed in this
section are normally used at the end of a program using graphics,
especially if that program is going to chain to another program. This
information helps you reclaim graphics memory space for other uses,
and return to the text-mode display.

•

Releasing Graphics Memory: RELEASE

When you perform INITGRAFIX, enough memory to contain the
default display buffer (usually SK bytes) is automatically reserved,
and your BASIC program is moved out of that area of memory.
Thereafter, anytime a GRAFIXMODE or GLOAD procedure changes
the graphics mode or the display buffer, additional space in memory
is reserved for the new mode or buffer, if necessary. Any memory
used for graphics usually remains unavailable for other use by your
BASIC programs until a RELEASE is performed.

If you have finished using some or all of the graphics memory space,
and you wish to make that memory again available for storing and
running BASIC programs, you can use the RELEASE procedure.
Each time you issue the statement

)PERFORM RELEASE

the graphics buffer space highest in memory is reclaimed for use by
BASIC, and your BASIC program is moved back down into that
space.

RELEASE has no arguments, and it reclaims memory space in steps.
If you were using the maximum amount of graphics display memory
(32K bytes), you would need to perform the RELEASE procedure
three times to release all the graphics memory in use. The first
RELEASE would reclaim the highest 16K bytes, used for buffer 2 of
mode 1, 2, or 3. The next RELEASE would reclaim the next SK bytes,
the space occupied by buffer 2 of mode 0. The third RELEASE would
reclaim the last SK bytes, where buffer 1 of mode 0 is stored.

If you were using only 16K bytes of graphics display space,
performing RELEASE twice would release all the graphics memory in
use. The first RELEASE would reclaim the highest SK bytes (buffer 2
of mode 0) and the next RELEASE would reclaim the last SK bytes
(buffer 1 of mode 0).

If you were using only SK bytes (buffer 1 of mode 0), a single
RELEASE would reclaim all the graphics memory in use. Extra
RELEASE procedures, performed when there is no memory still
reserved for graphics, have no effect.

Closing the .GRAFIX Driver

When you issue one of the BASIC statements RUN, LOAD, or NEW, all
files currently open are automatically closed. Thus, you do not
normally have to explicitly close the .GRAFIX driver.

You may, of course, close the .GRAFIX driver at any time in your
program. Closing the .GRAFIX driver does not, by itself, release any
of the graphics memory currently in use.

If you re-open the .GRAFIX driver after closing it, all the initial default
conditions for graphics are reset. For example, if you used the
statement

100 OPEN#1, ".GRAFIX"

to open the .GRAFIX driver originally, you could later reset all the
graphics default conditions with the statements

2250 CLOSE# 1
2260 OPEN#1, ".GRAFIX"

Returning to Text Mode

The BASIC statement

)TEXT

causes a return from any graphics display to normal, SO-column black
and white text mode. The text screen is not cleared, and the text
cursor position is not moved by this statement.

If you are using a different text mode such as 40-column color text,
you can return from any graphics display to your previously selected
text mode, without erasing the screen or moving the text cursor, by
using this statement:

)PRINT CHR$(15)

Unlike TEXT, this statement does not change to the standard, default
text mode.

Note that while a graphics buffer is being shown on the screen, any
operations that would normally affect the text display still do so. If the
program subsequently does a PRINT CHR$(15), the text display will
reflect those text operations.

If an error halts your program while you are showing graphics on the
screen, you are automatically returned to the previously chosen text
mode so that you may see the error message. However, if your
program ends while graphics are being displayed on the screen, you
must issue the statement TEXT or PRINT CHR$(15) to return to a text
mode display.

Graphics in Display Mode 1
Graphics display mode 1 exists as a by-product of the 40-column
color text modes. It can be used for sixteen-color graphics with a
horizontal resolution of 280 dots across the screen, but you must be
aware of some rather tricky restrictions.

First, imagine that each of the display dots in this mode can only be
either "on" or "off". Dots may be turned "on" by plotting dots (DOTAT,
DOTREL), lines (LINETO, LINEREL), or the foreground of text
characters (PRINT#) and other images (DRAWIMAGE). Dots may be
turned "off" by filling operations (FILLPORT), or by plotting the
background of text characters or other images.

Now, imagine each 280-dot horizontal screen line as divided into
forty segments of seven dots each. Within each seven-dot segment,
the "on" dots all appear in one color called the "foreground color",
while the "off" dots all appear in another color called the
"background color". That's the big restriction.

The color used for the "on" dots in a segment is the pen color used
for the last plotting or foreground operation which turned on any dot
in that segment. This foreground color may be any of the sixteen
colors, but changing the color of any "on" dot within a seven-dot
segment simultaneously changes the color of every other "on" dot in
that segment.

The color used for the "off" dots in a segment is the fill color used for
the last filling or background operation which turned off any dot in
that segment. This background color may be any of the sixteen
colors, but changing the color of any "off" dot within a seven-dot
segment simultaneously changes the color of every other "off" dot in
that segment.

Mode 1 can thus be used quite effectively for any graphic display
which uses only two colors: a background color and a foreground
color. In fact, separate areas of the screen can each contain such a
two-color display, using different pairs of colors. Such areas can
occupy adjacent dots vertically, but should be separated by at least
seven dots horizontally for safety. One horizontal dot separation is
sufficient, of course, if you can be sure those dots are in different
seven-dot segments. For example, the dot at x=6,y=34 and the dot at
x=7, y=5 are in different segments. The dots at x=14,y=2 and
x=14,y=3 are also in different segments.

On a single background color, lines may be drawn in any color as
long as they remain at least seven horizontal dots from any line in a
different color. However, a single line in a third color, when drawn
through a fine two-color display, may cause very strange effects over
a seven-dot-wide stairstepped area surrounding the line. See the
Standard Device Drivers manual for more information and another
description of mode 1 graphics.

For your convenience, here are the ranges of x-coordinates which, on
a given horizontal line, specify dots in each of the forty, seven-dot
segments:

Seg# Range of x Seg# Range of x

0-6 11 70-76
2 7-13 12 77-83
3 14-20 13 84-90
4 21-27 14 91-97
5 28-34 15 98-104
6 35-41 16 105-111
7 42-48 17 112-118
8 49-55 18 119-125
9 56-62 19 126-132

10 63-69 20 133-139

Seg# Range of x Seg# Range of x

21 140-146 31 210-216
22 147-153 32 217-223
23 154-160 33 224-230
24 161-167 34 231-237
25 168-174 35 238-244
26 175-181 36 245-251
27 182-188 37 252-258
28 189-195 38 259-265
29 196-202 39 266-272
30 203-209 40 273-279

Creating and Storing a Bit Array
The graphics procedures DRAWIMAGE and NEWFONT both require
information which has been stored in the Apple in a certain, known
form. This information usually begins as a drawing of an image or
character on graph paper, and is finally stored as a series of binary
bits (ones and zeros) in memory.

The drawing on graph paper can be viewed as a two-dimensional
array of squares, some of them darkened and others left blank. You
can then represent this drawing as a two-dimensional array of bits,
some of them ones and others left as zeros. Finally, you must convert
this array (or "block") of bits to a form which can appear in your
BASIC program and be stored in the Apple's memory for the later use
of DRAWIMAGE or NEWFONT .

In this section, you will first learn by example how to create a block of
bits for use by DRAWIMAGE. After you have read that discussion, the
description of the source block for NEWFONTwill be much easier to
understand. The stored block of bits used by NEWFONT is just a
special case of that used by DRAWIMAGE . Internally, in fact,
NEWFONT characters are printed on the graphics screen by a
specialized use of the DRAWIMAGE routine, using NEWFONT's block
of bits.

A Source Block for DRAW/MAGE

Here is a little example that may help you create your own source
block of bits for use by the DRAWl MAGE procedure. Suppose you
have drawn the following design on graph paper:

Now, to turn your design into a source bit block, put a "1" in each
square you want later to appear on the screen in the pen color, and
put a "0" in each square you want to appear in the fill color:

Row

0
1
2
3
4

ByteO Byte1 Byte2 Byte3

.............. 00 0000 00 00 0
0000000000
0000000000
0000000000
0000000000

The actual design is only 21 dots wide, but we have extended the bit
block out to 32 bits wide. The rows must be extended in one-byte (8-
bit) increments, because DRAWIMAGE specifies the row length in
bytes. For convenience, however, we are going to assign each row to
one or more elements of an integer array, and an integer value is
always stored as a two-byte (16-bit) number. For this reason, we
extend the rows in two-byte increments. In actual use, we will use
DRAWl MAGE to transfer only the first 21 bits of each row, so the extra
zeros will not matter.

Next, we must convert each sixteen-bit portion of each bit block row
into its decimal equivalent, and assign that decimal number to the
appropriate element of our dimensioned integer array (which we will
call SOURCE%). Here is a hint about one way to do this conversion
on the sample 16-bit number 1001110001111011:

1. Separate the number into four, 4-bit numbers:
1 001 11 00 0111 1 011

2. Express each 4-bit number as a hexadecimal digit:
9 C 7 B

3. Let BASIC convert this 4-digit hexadecimal number into
decimal and assign it to an array-variable element:

470 ARRAY%(4,7) =TEN ("9C7B")

For our example design, these lines would do the job of storing the
source bit block in integer array variable SOURCE%:

300 DIM SOURCE% (1 ,4)
310 SOURCE%(0,0) =TEN ("FFFF"): SOURCE%(1 ,0) =TEN
("F800")
320 SOURCE%(0,1) =TEN ("9041"): SOURCE%(1,1) =TEN
("0800")
330 SOURCE%(0,2) =TEN ("B6DB") : SOURCE%(1 ,2) =TEN
("6800")
340 SOURCE%(0,3) =TEN ("8208") : SOURCE%(1 ,3) =TEN
("2800")
350 SOURCE%(0,4) =TEN ("FFFF"): SOURCE%(1 ,4) =TEN
("F800")

The first subscript indicates the horizontal 16-bit
integer section within the row, while the second
subscript indicates the row number. This order of the
subscripts is very important. It is also important that
the ROWBYTES given in the DRAWIMAGE procedure
is exactly the number of bytes allowed by the
maximum first subscript given in the Dimension
statement for the two-dimensional integer array
variable.

And these lines would serve to place our design on the screen, with
the current cursor position at its top left corner:

500 ROWBYTES = 4 : XSKIP = 0 : YSKIP = 0
510 DWIDTH = 21 : DHEIGHT = 5
520 PERFORM DRAWIMAGE (@SOURCE%(0,0), %ROWBYTES,
%XSKIP, %YSKIP, %DWIDTH, %DHEIGHT)

It was convenient, but not actually necessary, to make each row of
our example source block fit neatly into a certain number of sixteen
bit integers. This allowed the array of integers to map fairly easily
onto the array of bits.

Each source row must fit into a certain number of eight-bit bytes,
because the ROWBYTES argument of DRAWl MAGE specifies the row
length in bytes. If each row is an odd number of bytes in length, you
should store the bits in the elements of a one-dimensional integer
array. In this case, some of the elements will contain the last eight bits
from one source row, and the first eight bits from the next row.

In fact, any source block can be stored in the elements of a one
dimensional integer array. This may be a little more confusing for the
programmer, but DRAWIMAGE will not mind: to DRAWIMAGE, every
source block appears to be a long, uninterrupted string of zeros and
ones. The ROWBYTES argument simply tells DRAWIMAGE how to
divide this long string into the rows of your source block.

A Source Block for NEWFONT

The following information may be useful in creating a source block of
bits for use by the NEWFONT procedure. This source block is
essentially a DRAWIMAGE source block which contains the
descriptions of a complete alphabet of characters.

Each character cell in a text font activated by NEWFONT should, at
the lowest level, be a source block portion with the following typical
arrangement:

0000000000000000

Typical character-cell
description.

Each 1-bit in a character cell will later be displayed in the pen color,
and each O-bit will be given the fill color (subject to modification by
the color table and the transfer function, of course).

This example shows a character from a font whose character cell is
twelve dots wide by seven dots high. Note that each row has been
filled out with zeros to make the row two bytes (16 bits) long. Rows
must be a whole number of bytes in length, because the new
character font is used as a source bit block by the DRAWIMAGE
routine, as described earlier in this section.

The set of block portions describing a font of such characters will
appear in the complete source block as follows:

0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

Character description
corresponding to
ASCII code 0.

Character descriptions
corresponding to ASCII
codes 1 through 64.

Character description
corresponding to
ASCII code 65.

Character description
corresponding to
ASCII code 66.

Character description
corresponding to
ASCII code 67.

Character descriptions
corresponding to ASCII
codes 68 through 127.

When PRINT# puts a NEWFONT character on the graphics screen,
DRAWIMAGE is automatically performed with a ROWBYTES
argument that is the smallest number of bytes needed to contain the
number of bits indicated by NEWFONT's character-cell width. This
automatic use of DRAWl MAGE also uses an XSKIP of 0, a YSKIP of
(ASCII code)*(character-cell height), and a DWIDTH and DHEIGHT
which are the NEW FONT character-cell width and height. See the
DRAWIMAGE routine for more information.

For character cells 1 to 8 bits wide, each row in the source block
must be one byte long (extended with extra bits to fill out the byte, if
necessary). Thus, you will have to store two one-byte character rows
in each two-byte element of the font's integer array variable. For
character cells 9 to 16 bits wide, each source block row must be two
bytes long, and can be stored in a single two-byte element of the
font's integer array variable. And so on.

Note that rows consisting of odd numbers of bytes do not fit neatly
into individual, two-byte integer array variable elements. It is usually
easier on the brain to store the source blocks for such fonts in a one
dimensional integer array variable. A source block whose rows are an
even number of bytes in width can be stored more easily in a two
dimensional array.

You might also wish to store a font in an array variable with an extra
dimension corresponding to the ASCII character code for the
character cell.descriptions. In that case, the ASCII code would be the
last dimension.

NEW FONT can specify character cells with any width and height up
to 255 bits by 255 bits, but all of the character cells within one font
must be the same width and height. The character rows in the font
source block can thus be any width up to sixteen bytes (extending
each row in the character cell with extra, unused bits to fill up the last
byte, if necessary). A new font may consist of up to 256 character
cells, corresponding to ASCII codes 0 through 255.

For easy use, each character description should have the same
position in the font source block as it would have in the standard
ASCII sequence. This means you should reserve space in the
character set array (using all-zero blanks, for instance) even for
characters that you will not use (such as the ASCII control
characters). You do not need to provide descriptions of characters
later in the ASCII sequence than the last character that you will
actually use. See appendix A for a description of the standard ASCII
character sequence.

The System Font

The standard system character font provides the characters used for
all text-mode displays, and is also the default font used for text in
graphics displays. Each character cell is 7 bits wide by 8 bits high, so
each row in the source block is one byte wide, and storing each
character description requires eight bytes.

The bits in the system font source block are arranged differently from
the format shown for a NEWFONT source block. Each system font
character is described in reverse, left for right, compared to
NEWFONT character descriptions. The leftmost bit (MSB) of each
byte, rather than the rightmost, is not used. The character description
for the letter P, for example, would appear in the system font source
block as follows:

0
0
0
0

VV"'VV\J,.o

000()0010
00000000

System font
character description
corresponding to
ASCII code 80.

Direct Control of the Screen
The invokable module BGRAF.INV consists of routines that make
using the .GRAFIX driver much easier than it would otherwise be.
However, it is also possible to issue commands to the .GRAFIX driver
directly. This may be done in addition to using the BGRAF.INV
routines, or in place of those routines. Direct screen control
commands and BGRAF.INV routines may be intermixed.

Before using the .GRAFIX driver for direct screen control, you must
first open the driver and assign it a file reference number, using a
statement such as

)OPEN#1, ".GRAFIX"

This example statement assigned .GRAFIX the file reference number
1, but you could assign it any integer from 1 through 10 which is not
already assigned to a file.

Once you have opened the .GRAFIX driver, you can use the driver's
file reference number to send a stream of command characters to the
driver. Most of these characters are not printing characters, so you
will use the CHR$ function to convert each character's ASCII code
number into the corresponding character.

For example, if you have already opened .GRAFIX and assigned it the
file reference number 1, you could change the pen color to yellow
with the following statements:

)SETPEN = 19: YELLOW= 13
)PRINT#1; CHR$(SETPEN); CHR$(YELLOW)

Direct screen control is more difficult if the operations require two
byte integer arguments. You must convert such arguments into the
form low-byte, then high-byte, and send the character corresponding
to the decimal equivalent of each byte. See the Standard Device
Drivers manual for details about the characters used for direct
screen control, and their arguments.

Summary

Starting Up

When you are ready to use graphics, issue BASIC statements such as
these:

100 OPEN#1, ".GRAFIX"
110 INVOKE "BGRAF.INV"

Any file reference number (1 through 10) may be used.

Using Graphics Routines

To use a graphics procedure, issue BASIC statements such as

140 PERFORM PENCOLOR (%13)
150 X= 23: Y = 44
160 PERFORM LINETO (%X, % Y)

Every argument which is to be passed to the procedure as an integer
must be preceded by a percent sign (%).

To use a graphics function, issue a BASIC statement such as

170 COLOR% = EXFN%.XYCOLOR : X% = EXFN%.XLOC

Graphics Modes

Mode Mode
Number Description

0
1
2
3

280 x 192, Black & White
280 x 192, 16 Colors (restricted)
560 x 192, Black & White
140 x 192, 16 Colors (unrestricted)

Display Buffers

Buffer
Number

1
2

Colors

Buffer
Name

Primary Buffer
Secondary Buffer

Buffer
Size

8K
16K
16K
16K

Color Number Color Name Color Number Color Name

0 Black 8 Brown
1 Magenta 9 Orange
2 Dark Blue 10 Grey2
3 Purple 11 Pink
4 Dark Green 12 Green
5 Grey 1 13 Yellow
6 Medium Blue 14 Aqua

7 Light Blue 15 White

Transfer Options

Option
Number

0
1
2
3
4
5
6
7

Option Name

Replace
Overlay
Invert
Erase
Inverse Replace
Inverse Overlay
Inverse Invert
Inverse Erase

The Graphics Procedures

Procedure

INITGRAFIX

GRAFIXMODE (%MODE,
%BUFFER)

GRAFIXON

VIEWPORT (%LEFT, %RIGHT,
%BOTTOM, %TOP)

Result Color

Source Color
Source Color OR Screen Color
Source Color XOR Screen Color
(NOT Source) AND Screen Color
(NOT Source) Color
(NOT Source) OR Screen Color
(NOT Source) XOR Screen Color
Source Color AND Screen Color

Description

Resets four initial conditions:
full-screen viewport; cursor at
x=O,y=O (lower left corner);
normal color table and transfer
function.

Selects a graphics mode and
display buffer for next graphics
operations.

Shows graphics on the screen,
using mode and buffer currently
selected.

Sets the viewport boundaries; no
operation will plot dots outside
the current viewport.

PENCOLOR (%COLOR)

FILLCOLOR (%COLOR)

SETCTAB (%SOURCECOLOR,
%SCREENCOLOR,
%RESULTCOLOR)

XFROPTION (%OPTION)

MOVETO (%X, % Y)

MOVEREL (%OX, %DY)

Sets pen color used for plotting
dots, lines, and foreground of
text characters and DRAWIMAGE
blocks.

Sets fill color used for erasing
the viewport and for plotting the
background of text characters
and DRAWIMAGE blocks.

Sets a condition in color table.
If any operation tries to plot a
dot with pen color or fill color
SOURCECOLOR at a point where
the existing display dot has the
color SCREENCOLOR, dot is
given the new color
RESULTCOLOR.

Sets transfer mode, which may
alter color used for plotting any
dot. Does bit-wise logical
operation on source color for a
dot (pen color, fill color, or
result of color table) and
existing color of !hat dot in the
display to determine a new color
for the display dot.

Moves the cursor to absolute
position x=X,y=Y.

Moves the cursor OX dots to the
right, and DY dots up (negative
values move left or down).

DOTAT (%X, %Y)

DOTREL (%DX, %DY)

LINETO (%X, %Y)

LINEREL (%DX, %DY)

FILLPORT

NEWFONT (@FONT%(0,0),
%WIDTH, %HEIGHT)

SYSFONT

DRAWIMAGE (@BLOCK%(0,0),
%ROWBYTES, %XSKIP, %YSKIP
%DWIDTH, %DHEIGHT)

Plots a dot at absolute position
x=X,y=Y in the pen color.

Moves DX dots to the right and
DY dots up (negative values
move left or down), and plots a
dot there in the pen color.

Draws a line in the pen color
from the old cursor position to
absolute position x=X,y=Y.

Draws a line in pen color from
old cursor position to a point DX
dots to right and DY dots up
(negative values move left or
down).

Fills the viewport with the current
fill color.

Selects new set of characters,
stored in integer array variable
FONT%, which PRINT# can put
into graphics. Each character
cell in the new font is WIDTH
dots wide by HEIGHT dots high.

Returns to the normal text-mode
font for graphics characters.

Puts a predefined image, stored
in integer array variable
BLOCK%, on the display with
cursor at top left corner of the
image. Source block is

GSAVE."PATHNAME

GLOAD."PATHNAME

RELEASE

The Graphics Functions

Function

XYCOLOR

XLOC

YLOC

ROWBYTES bytes wide. From top
left corner of block, skip XSKIP
bits right and YSKIP bits down to
find top left corner of the desired
portion. Transfer portion DWIDTH
bits wide by DHEIGHT bits high
to the display, using the pen
color for 1-bits, fill color for O
bits.

Saves the currently selected
display buffer on diskette, in a
FOTO file named PATHNAME.

Loads FOTO file named
PATHNAME into currently
selected buffer, after setting
appropriate graphics mode.

Releases the highest graphics
memory buffer space for use by
BASIC programs. May be
repeated to release any
remaining buffers.

Description

Returns the color number for the
dot at the cursor position.

Returns the x-coordinate of the
cursor position.

Returns they-coordinate of the
cursor position.

Useful Basic; Statements

Statement

TEXT

PRINT CHR$(15)

PRINT1; Apple

PRINT1; CHR$(19);CHR$(13)

LOAD, RUN, or NEW

Description

Switches display on screen from
graphics to normal text mode.

Switches display to last text
mode selected.

Prints text characters on the
graphics display, starting at the
cursor position (if you used

OPEN1, .GRAFIX
to open the graphics driver).
Cursor marks upper left corner
of character's rectangular cell.

Sends direct screen-control
characters to the .GRAFIX driver.

Each of these statements closes
any open files, in addition to
its other tasks.

Index

A
ABS 68
Accessing files 139
Arguments 54
Arithmetic expressions 48

Floating-point 65
Operator precedence 49

Array
Dimension 44
Element 44
Name 44
Subscript 44

Arrays 44
AS EXTENSION 137
AS INPUT 137
AS OUTPUT 137
ASC 59
ASCII codes 221-ff
Assignment statements 102
ATN 66

B
BGRAF.INV 272
Bit array, creating 314
Bit array, storing 314
Boolean expressions 51
Branching

Conditional 106
Unconditional 105

BUTTON 219

c
CAPTURE, EXEC file 34
CAT 132
CATALOG

Command 132
As file type 131

CHAIN 23
Character, Prompt 3
CHR$ 58
CLEAR 17
CLOSE 138
CLOSE# 138
Color

Control 278
Table 278

Colors 277,323
Conditional branching 106
Console 74
Constant 39
CONT 22,121
CONTROL

-5 27
-6 27
-7 10,27
-8 27
-C 9, 10, 17,27,80,82,84,

121, 122
-M 84
-RESET 28
-X 7

CONV 69
CONV& 69
CONV$ 69
CONV% 70
Copying an image 280
cos 65
CREATE 129
CREATE 130
Creating files 130
Cursor 3
Cursor-move keys 7

D
Data element list 83
Data elements 83
Data files 142, 147
Data list pointer 85
DATA

Function 82
As file type 131

Debugging programs 25
DEF FN 70
Defining functions 70
DEL 12
DELETE 134
Device name 129
Digit spec 93
DIM 44
Dimension, array 44
Direct screen control 321
Directories 18
Discrete element 254
Display buffers 275, 323
DOTAT 279, 282, 299
DOTREL 279, 282, 300
DRAWIMAGE 282, 307, 315

E
Editing programs 6
Element 252

Discrete 254
ELSE 2, 108

. END 22
Engrspec 89, 99
Entering data 78

Numbers 79
EOF 43
ERR 43, 123
ERRLIN 43, 123
Error handling 121
Error Messages 227-ff

Errors 226
ESCAPE key 7
EXEC file, CAPTURE 34
EXEC 28
Execution

Deferred 5
Immediate 5

EXFN. 161, 164, 282
EXFN% 161, 165
EXP 68
Expression

List 87
Arithmetic 48
Logical 48
Long integer 48
String 48

Expressions 48, 258
External subroutines 160

F
False 51
File

Access, Sequential 145
Access, Random 150
Number 139, 137, 142
Types 133, 136

Filenames 128
Files 18
Files, closing 136
Files, opening 136
Fill color 278
FILLCOLOR 282, 291
FILLPORT 280, 282, 301
Fixspec 89, 94
Floating-point arithmetic 65
FOR..NEXT 111
Formatting information 86
FRE 18,43
Functions 54
Functions, Defining 70

G
GET 81
GLOAD 282,309
GOSUB 115
GOTO 105
GRAFIXMODE 282, 285
GRAFIXON 287
Graphics

Functions 327
Memory use 275
Modes 274, 323
Module 160
Procedures 326

GSAVE 282, 309

H
Hello (program) 3
HEX$ 59
HOME 16
HPOS 15,44

I
IE.GOTO 107
IF..THEN 107
IMAGE 2, 89
INDENT 11, 44
INITGRAFIX 282, 284
INPUT 78
INPUT# 139
lnputRandom, program 153
INSTR 63
INT 66
Integers 39, 40
Interrupting a program 9
INVERSE 16
INVOKE 161 , 273, 282

K
K!3D 43
Key

L

CONTROL-X 7
Cursor-move 7
ESCAPE 7
Special 26

Large programs 23
LEFT$ 60
LEN 57
Length (of string) 42
LET 103
Line, program 5
LINEREL 279, 282, 300
LINETO 279,282,300
LIST 8,10
Literal spec 89, 92
Literal strings 83
LOAD 19
Loading programs 18
Local filenames 18, 129
LOCK 135
LOG 68
Logical

Expressions 51
Operator precedence 52

Long integers 2, 39, 40
Looping 110

M
Memory Management

Commands 17
MID$ 61
Modes, graphic 274
MOVEREL 279, 282, 299)
MOVETO 279, 282, 298

N
Name, array 44
NEW 8,17
NEWFONT 282,305,317
NORMAL 16
NOTRACE 26
Null strings 81
Numeric

Formatting 93
Spec 89

NumericSpecTester (program) 97

0
OFF EOF# 154
OFF ERR 121
OFF KBD 119
ON EOF# 154
ON ERR 121
ON KBD 26, 119
ON .. GOSUB 119
ON .. GOTO 118
OPEN 129
OPEN# 137
Operands 48, 255
Operators 48, 257
Output format 89
OUTPUT 26
OUTPUT# 140, 141
OUTREC 11, 44

p
Pathnames 18, 128
POL 219
Pen color 278
PENCOLOR 282, 289
PERFORM 161, 162, 282

POP 117
Precedence 49

Of operators 49
PREFIX$ 44 129
Prefixes 18
PRINT 4, 75
PRINT USING 2, 77,87
PRINT# 141
PRINT# USING 87, 142
Printing field 87
PrintRandom, program 152
PrintSequential, program 145
Program

Editing 6
Interruption 9
Line 5
Variables 23

Programs
Hello 3
lnputRandom 153
NumericSpecTester 97
PrintRandom 152
PrintSequential 145
ReadSequential 148
TextfileMaker 30
WriteSeq uential 14 7

Programs
As Text files 33
Debugging 25
Large 23
Loading 18
Saving 18
Starting 20
Stopping 20

Prompt character 3

R
Random access 145, 150
Random number 66
READ 82
READ# 142
ReadSequential, program 148
Reals 39,41
REC 156
Reclaiming graphics memory 281
Record number 139, 142
Relational expressions 51
RELEASE 282, 310
REM 104
RENAME 134
Repeat factor 90
Reserved variables 43
Reserved word 2, 38, 43,

236-237
RESET 27
RESTORE 86
RESUME 123
RETURN key 4
RETURN 115, 120, 121
RIGHT$ 61
RND 66
Root directory 134
RUN 20

s
SAVE 19, 129
Saving a display 280
Saving programs 18
SCALE 99
Scispec 89, 98
Sequential access 145
SETCTAB 282, 291
SGN 67
SIN 65
SPC 75,77
Special keys 26
SQR 68

Starting BASIC 3
Statement list 47
Statements 47, 261
STEP 113
STOP 22, 121
Storing data 82
STR$ 57
String

Functions 57
Length 42
Spec 89,90

Strings 39, 42
SUB$ 64
Subdirectory 134
Subroutines 115, 160
Subroutines, external 160
Subscript, Array 44
SWAP 103
Syntax 4,25,252
SYSFONT 282, 307

T
Tab action 7 4
Tab field 74
TAB, 75 77
TAN 65
TEN 60
Text files 145
Text window 13, 15
TEXT 14
TEXT, as file type· 131
TextfileMaker program 30
TRACE 25, 141
Transfer option 278, 326
True 51
Turnkey system 3
TYP 155

u
Unconditional branching 105
UNLOCK 135

v
VAL 57
Variable

Maps 238-ff
Names 2
Types 39

Variable 38
Variables

Program 23
Reserved 43

VIEWPORT 279, 282, 289
VPOS 15,44

w
WINDOW 13
WINDOW, Parameters 14
Window, Text 13, 15
Words, Reserved 43
WRITE# 144
WriteSequential, program 147

X
XFROPTION 282, 294
XLOC 282, 302
XYCOLOR 273, 282, 302

y
YLOC 282, 302

Special
.CONSOLE 31, 82,128
.DOC 160
.GRAFIX 272
.INV 160
.PRINTER 128

'
it¥
~.~-.,<i

)::.. .

:g -f,' ·· ._ ,
CD '· -!,

tD ·~~ t: ~.
(/) -\1·,
-· 'I
::l CD . :
(/)
(/) M'

Ill

tXJ , t .. -·
)::.. :1
(/) . ·: -.. .
(") I

\
:::0 - I

<ll ' ~~
(i)'

'
(i)
~ ..
()
<ll

~
~
c::
~
' I I

~ 1\
1: • 3 '· !II· .

.
<ll ..
t\:) I

' __r- ~-' '- .

· .9PPIC! computar/ " I

10260 Bandley Drive
Cupertino, California 95014

(408) 996-1010
.I'·
r 030-292-A - II II . II II II II II II II

	Apple III Business BASIC Reference Manual, Volume 2
	Preface
	Apple III Business Basic References
	Syntax Notation
	Statements and Functions
	ASCII Character Codes
	Errors
	Format of Error Messages
	Error Messages
	Alphabetical List of Reserved Words
	Variable Maps
	Simple Variable Format
	Space Savers
	Memory Usage
	Speeding Program Execution
	Summary of Apple Business BASIC
	Syntax Notation
	Elements
	Using the Graphics Invokable Module
	Overview of the Graphics Display
	Overview of the Graphics Routines
	Details of the Graphics Routines
	Viewports and Color
	Moves, Dots, Lines, and Areas
	Screen Information Functions
	Displaying Text and Other Images
	Preserving Your Graphics
	Graphics in Display Mode 1
	Creating and Storing a Bit Array
	Direct Control of the Screen
	Summary
	Index

